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Abstract. A Hadamard matrix is said to be completely non-cyclic (CNC)
if there are no two rows (or two columns) that are shift equivalent in its
reduced form. In this paper, we present three new constructions of CNC
Hadamard matrices. We give a primary construction using a flipping op-
eration on the submatrices of the reduced form of a Hadamard matrix.
We show that, up to some restrictions, the Kronecker product preserves
the CNC property of Hadamard matrices and use this fact to give two
secondary constructions of Hadamard matrices. The applications to con-
struct low correlation zone sequences are provided.
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1 Introduction and the Basic Definitions

Low correlation zone sequences (LCZ) signal sets have important ap-
plications in quasi-synchronous code division multiple access (CDMA)
applications, proposed in 1992 [3]. There has been considerable work to-
wards constructions of these sequences. The first construction of LCZ
set, given in [11] in 1998, produces a LCZ signal set whose size is not
maximized. Following this approach, many different constructions have
been proposed, including approaches in [12] [9] [13] [8] [10] [16] [1]. In
2007, Gong, Golomb, and Song [5] describe a general approach to the
construction of LCZ sequences using sequences with subfield decomposi-
tions. Constructions of this type of LCZ signal sets with maximum size are
in one-to-one correspondence with constructions of completely non-cyclic
Hadamard matrices.

In this paper, we will show three new constructions of such Hadamard
matrices. The first and third new constructions generalize two known
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constructions in [8] and with improved results. The second construction
is the Kronecker product of matrices, which we show to preserve the
completely non-cyclic property, under some conditions.

We now introduce basic concepts and definitions which will be used
throughout the paper.

A. Basic Concepts about Sequences. Let p be a prime number, Fp
denote a finite field with p elements, and a = {ai} be a sequence over
Fp, of period N . The shift operator is defined by L(a) := (a1, a2, · · · ). So,
Lr(a) = (ar, ar+1, · · · ). For two sequences, a and b, if b = Lr(a), then a
and b are called shift equivalent, denoted a ∼ b. Otherwise, we say that a
and b are shift distinct and write a � b. If the elements of a satisfies the
linear recursive relation: ar+k =

∑r−1
i=0 ciai+k, k ∈ Z, where ci ∈ Fp and

t(x) = xr −
∑r−1

i=0 cix
i is the polynomial with the smallest degree which

recursively generates a, then the degree of t(x) is called the linear span
of a, denoted l(a).

When N | pn−1, we can associate the sequence a with a function f(x)
from Fpn to Fp such that ai = f(αi), i ∈ Z, where α is an element in Fpn
with order N . Then a is called an evaluation of f(x). In this paper, we
assume that f(0) = 0. We say that a is balanced if |Na − Nb| ≤ 1 for
any a, b ∈ Fp where Nx = |{ai = x | 0 ≤ i < N}|. Let ω = e2πi/p be a
primitive pth root of unity. The periodic crosscorrelation of a and b is
defined by Ca,b(τ) =

∑N−1
i=0 ωbi+τ−ai , 0 ≤ τ ≤ N−1 where the indices are

computed moduloN−1. If b = a, we write Ca,b(τ) as Ca(τ) and call it the

autocorrelation of a. If a is balanced and Ca(τ) =

{
N, τ ≡ 0 (modN)

−1, τ 6≡ 0 (modN),

then we say that a has an (ideal) 2-level autocorrelation function.

B. Hadamard Matrices and CNC Hadamard Matrices. A Hadamard
matrix of order n is a n× n matrix H with entries in {1,−1}, such that
HHT = HTH = nIn, where In is the n by n identity matrix. By applying
elementary “Hadamard-preserving” operations, the matrix H can always
be transformed into a special form in which all entries in the first row and
the first column are equal to 1, see [2][4]. Without loss of generality, all
the Hadamard matrices in this paper will be assumed to be in this form.
The reduced form of H, denoted H− is the matrix obtained from H by
deleting the first row and the first column. A Hadamard matrix is said to
be completely non-cyclic (CNC) with respect to row (or column) shifts if
any two rows (respectively columns) in the reduced form of H are shift
distinct.
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One can see that, up to cyclic shifts, there is a unique sequence of
length 3 consisting of two −1’s and one 1. This implies that there is no
CNC Hadamard matrix of order 4. By a similar enumeration, there are
five shift-distinct sequences of length 7 consisting of four −1’s and three
1’s, which implies that there is no CNC Hadamard matrix of order 8.
The smallest value of q for which there exists a CNC Hadamard matrix
of order 2q is 4.

A generalized Hadamard matrix is a matrix H = (hij)v×v where hij =
ωsij , sij ∈ Fp of order v such that HH∗ = vIv, where H∗ is the conjugate
transpose of H and ω is a primitive pth root of unity. Reduced form
and the CNC property are analogously defined for generalized Hadamard
matrices.

C. Equivalent Problem. A low correlation zone signal set with param-
eters (N, r, δ, d) is a set K consisting of r shift-distinct sequences over
Fp with period N which satisfies that |Ca,b(τ)| ≤ δ for all τ such that
|τ | < d, when a,b ∈ K, and τ 6= 0, when a = b. It has been shown in
the literature [13][8][5], that a construction of an LCZ signal set with the
parameters (qm − 1, q − 1,−1, d) where d = (qm − 1)/(q − 1) (q = pn)
is equivalent to a construction of a family of functions from Fpn to Fp,
denoted as S, satisfying the following three conditions:

(a) Each function in S is balanced,

(b) The sum of any two functions in S is also balanced, and

(c) Any two sequences obtained from the functions in S by evaluation
are shift distinct.

The number of functions in S, denoted |S|, cannot exceed q − 1. Gong,
Golomb and Song [5] point out that a construction of S with maximal
size is equivalent to a construction of a CNC Hadamard matrix of order
q. In the literature, there are only three known constructions for the CNC
Hadamard matrices of order q, of which the first two appear in [8] and
one of them also appears in [13] as a somehow equivalent case, and the
third in [5].

See [4] for further background on the theory of sequences and known
constructions of 2-level autocorrelation sequences (see Chapters 8-9).

The rest of the paper is organized as follows. In Section 2, we present
a new primary construction for CNC Hadamard matrices of order q =
pn based on 2-level autocrrelation sequences over Fp and the flipping
operator. In Section 3, we assert, under some restrictions, that Kronecker
products of CNC Hadamard matrices are again CNC Hadamard matrices.
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In Section 4, we give a construction using the Kronecker product and 2-
level autocorrelation sequences. Section 5 provides the related functions
and LCZ signal sets, and Section 6 includes concluding remarks.

[6] is a full version of this paper.

2 A Primary Construction of CNC Hadamard Matrices
Using Flipping Operator

In this section, we present a new primary construction for CNC gen-
eralized Hadamard matrices of order q = pn, where p is a prime. We
assume that N = pn − 1. For a given 2-level autocorrelation sequence
a = (a0, · · · , aN−1) over Fp, we may construct a circular matrix C(a) =
(aij) where aij = ai+j . Let bi = ωai , where ω is a primitive pth root of
unity. Then we have the circular matrix C(b), also written symbolically

as C(b) = ωC(a). Let H(a) =

(
1 1

1T ωC(a)

)
. Then H(a) is a Hadamard

matrix if p = 2 and a generalized Hadamard matrix otherwise. We will
give a construction of CNC Hadamard matrices by applying the flipping
operation on the submatrices of C(a).

Let x = (x0, x1, · · · , xk−1) and Rk be the back diagonal identity ma-
trix of order k, i.e., the entries of the back diagonal is equal to 1, and the
other entries are zeros. Then xRk = (xk−1, · · · , x1, x0), Rk is referred to
as a flipping operator. Note that the flipping operation does not change
the Hadamard property.

Construction 1. Let e = (e0, e1, · · · , e2h−1) be a positive integer se-
quence satisfying that

∑2h−1
i=0 ei = N, ei > 0. We denote the first e0

columns in C(a) as anN×e0 submatrix A0, the second e1 columns in C(a)
as an N ×e1 submatrix A1, and so on. Then C(a) = (A0, A1, · · · , A2h−1).
Let

E(a) =
(
A0, A1Re1 , A2, A3Re3 , · · · , A2h−2, A2h−1Re2h−1

)
.

Note that E(a) is resulted from C(a) by flipping h blocks of the columns.
Let H− = ωE(a). Then

H =

(
1 1

1T ωE(a)

)
(1)

is again a Hadamard matrix.
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Theorem 1. Assume that l(a) < N
2(4h) where h is a positive integer and

l(a) < ei < N − l(a). Then any two row vectors in ωE(a) (equivalently
in E(a)) are shift distinct. Thus H, defined in (1), is a CNC Hadamard
matrix.

In order to prove Theorem 1, we need some basic properties of the
linear spans of sequences and their corresponding reciprocal sequences,
which are summarized below.

Property 1. Assume that a = {ai} is a sequence over Fp with period N .
Let b = {bi} be the reciprocal sequence of a, i.e., b0 = a0 and bi =
aN−i, 0 < i < N .

(a) l(a) = l(b).

(b) l(x + Lτ (x)) ≤ l(x) where x ∈ {a,b}.
(c) l(a + Lτ (b)) ≤ l(a) + l(b) ≤ 2 max{l(a), l(b)}.
(d) Maximum length of the runs of zeros in a is upper bounded by l(a)−1,

i.e., there are at most l(a)− 1 consecutive zeros in a.

(e) b = LN−1(aRN ). Thus l(aRN ) = l(a).

Proof of Theorem 1. We only need to prove the row distinctness of H− =
ωE(a), which is equivalent to the row shift-distinctness of E(a). If there are
two row vectors in E(a), say u,v which are shift equivalent, i.e., there is
r ≥ 0 such that u = Lrv, then u−Lrv = 0. According to the construction,
we can consider their respective index sets of u and v, each having 2h
separating lines (including the last end point) at

∑i
j=0 ej , i = 0, · · · , 2h−1

and at
∑i

j=0(ej + r), i = 0, · · · , 2h − 1 (recall that the index is reduced
by modulo N). Note that the multi-set Q = {ei, ei + r | 0 ≤ i < 2h} has
at most 4h different elements. Therefore, u− Lrv can be divided into at
most 4h blocks, each of which consists of consecutive elements of one of
the three types of the sequences in Table 1 where R = RN , the flipping
operator defined at the beginning of this section. Their respective linear

Table 1. Types of the full sequences containing the segments of u− Lrv

Type Linear Span

a± Li(a) 0 ≤ i < N 1 l(a)

aR± Lj(aR) 0 ≤ j < N 2 l(a)

a± Lk(aR) 0 ≤ k < N 3 ≤ 2l(a)
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spans are determined by Property 1 where we exclude the cases that the
sequences are zero sequences in the first two cases in Table 1. Therefore,
according to Property 1, the sequences of Types 1 and 2 have at most
l(a) − 1 consecutive zeros and the sequences of Type 3 have at most
2l(a)− 1 consecutive zeros.

Case 1: |Q| = 4h and each block has the equal length, which is equal
to N

4h . This is possible only when N
4h is an integer. In this case, a block in

u−Lrv gives N
4h consecutive zeros. Since l(a) < N

8h , we have 2l(a)−1 < N
4h ,

which is a contradiction.
Case 2: Each block does not have the equal length. According to the

pigeon hole principle, there is at least one block with length > N
4h . Hence,

this block gives more than N
4h consecutive zeros, which is a contradiction,

since there are at most 2l(a)− 1 consecutive zeros where 2l(a)− 1 < N
4h .
�

If h = 1, then we can have a more refined result shown below by
carefully examining patterns appeared in u−Lrv in the proof of Theorem
1.

Theorem 2. With the same notation as in Theorem 1, we assume that
l(a) < N

4 , h = 1, e = (e0, e1), and 3l(a) < e0 < N − 3l(a). Then H is a
CNC Hadamard matrix.

Proof. We proceed as in the proof of Theorem 1 until we divide into the
two cases.

We now write e0 = k, so that e1 = N − k. Without loss of generality,
we can assume that u is the sequence from the first row of E(a), and v
is the tth row of E(a). Since the case k < N/2 or N − k < N/2 can be
processed similarly, we may assume that t < k < N/2.

Configuration 1: r = k. There are three sections which are over-
lapped with lengths k, (N−k)−k, and k added up to N . Since k > 3l(a),
then the block with length k has k consecutive zeros in u − Lr(v). On
the other hand, any block in u− Lr(v) is a block in a sequence with the
linear span at most 2l(a). Thus, it has at most 2l(a) consecutive zeros,
which is a contradiction, since 2l(a) < 3l(a) < k.

Configuration 2: 0 < r < k or k < r < N − 1. The proof of the
latter case can be proceeded in the same way as the former case, so we
omit it. For 0 < r < k, we also could have r < N − k or r ≥ N − k. We
will only show the case r < N − k and the proof for r ≥ N − k is similar.
Then we have four blocks with the following lengths configuration:

k N − k
k − r N − k r
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In details, we have the following pattern.

u = a0 · · · ak−1−r ak−r · · · ak−1 aN−1 · · · ak+r ak+r−1 · · · ak

Lr(v) = at+r · · · at+k−1 at−1 · · · at−r at−1−r · · · at+k at · · · at+r−1

Thus the four blocks of u − Lr(v) has the following length patterns ac-
cording to Table 1 in the proof of Theorem 1.

Segment Type Length

1 1 k − r
3 2 N − k − r

2, 4 3 r

(Note. For a different range of r, the only difference is that those blocks
correspond to their respective types of sequences in a different order.)

The average length is N/4. The case that N − k − r = r = k =
N/4 is possible only when N

4 is an integer. In this case, the first block
gives N/4 consecutive zeros of Type 1 sequences with linear span l(a).
According to Property 1-(d), it has at most l(a) − 1 consecutive zeros.
From the assumption that l(a) < N/4, we have l(a) − 1 < N/4, which
is a contradiction. Thus, we only need to consider the case that not all
the blocks have the same length. According to Property 2 below we have
u � v.

Thus H is a CNC Hadamard matrix.

Property 2. With the same notation in the proof of Theorem 2, let that
u be the sequence from the first row of E(a), and v, the tth row of E(a),
k < N/2. If the lengths of the corresponding blocks in u = Lr(v) are
k − r, r, N − k − r, and r respectively, which are not equal, then u � v.

The proof of Property 2 is omitted here due to the lack of space. The
reader is referring to the full version of this work [6].

Remark 1. The construction given in [8] (Theorem 17) can be considered
as a special case of Theorem 1 when h = 1. However, the result given by
Theorem 2 is an improvement of that result; Theorem 17 of [8] requires
that l(a) < N/6 and, here, Theorem 2 only needs that l(a) < N/4. This
bound also answered the question, addressed in [8] (Theorem 17), about
whether there exists a general class when l(a) ≥ N/6.
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3 CNC Property of Kronecker Products

In this section, we discuss the Kronecker product of two CNC Hadamard
matrices. We then provide a construction using the Kronecker product
and 2-level autocorrelation sequences in the next section. For these two
sections, we will proceed the binary case for simplicity. For general p, the
results are similar to the binary case, so we omit here.

For matrices A = (aij) and B, the Kronecker product of A and B,
denoted A⊗B, is:

A⊗B =


a00B a01B · · · a0,n−1B

a10B a11B · · · a1,n−1B
...

...
. . .

...

an−1,0B an−1,1B · · · an−1,n−1B

 .

In this section, we denote by j̃n the row vector of n alternating ±1s; that
is

j̃n :=
(

1 −1 1 · · · (−1)n−1
)
.

We may omit the subscript when the dimension of the vector is implicit.
Note that a CNC Hadamard matrix does not guarantee that any two rows
of the matrix are shift distinct.

Theorem 3. (Construction 2) If A and B are Hadamard matrices
such that the following are true:

i) for any two rows of A, a = (1,a−) and a′ = (1,a′−), a � ±a′ and
a− � ±a′−,

ii) for any two rows of B, b = (1,b−) and b′ = (1,b′−), b � ±b′ and
b− � ±b′−,

iii) the orders of A and B are both greater than 3, and
iv) j̃ is not a row in the reduced form of A or B,

then A⊗B is CNC Hadamard matrix and its rows are also shift distinct.

From the conditions i)-ii), we know that both A and B are CNC.
Theorem 3 can be seen as a direct consequence of the following lemma.
Since this lemma is technical and straightforward, we will omit the proof
here. The proof of Theorem 3 is given in the full version of this work [6].

For a vector
x =

(
x0, x1, · · · , xd−1

)
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of order d, let x− denote x with the first entry removed;

x− =
(
x1, x2, · · · , xd−1

)
.

Lemma 1. If a,a′,b and b′ be row vectors such that the following are
true:

i) a � ±a′ and a− � ±a′−, and
ii) either b � ±b′ and b− � ±b′−, or b = b′.

Then a⊗ b � a′ ⊗ b′ and (a⊗ b)− � (a′ ⊗ b′)−

4 A Secondary Construction from the Kronecker Product
and 2-level Autocorrelation Sequences

In this section, we show a construction for CNC Hadamard matrices using
the Kronecker product and 2-level autocorrelation sequences.

Let u and v be two 2-level autocorrelation sequences over F2 of period
N = 2n − 1 (they may be equal). Recall that RN the back diagonal
identity matrix of order N . Thus vRN = (vN−1, · · · , v1, v0) is also a 2-
level autocorrelation sequence, which is a shift of the reciprocal of v (see
Property 1). For p = 2, recall the following notation

H(x) =

(
1 1

1T (−1)C(x)

)

where C(x) is the circular matrix defined in Section 2.
Construction 3. Let Ik be the identity matrix of order k. Let

B =

(
H(a) H(bP )

H(a) −H(bP )

)
where

{
P = RN for a ∼ b

P ∈ {IN , RN} for a � b.

Let A be a ±1 matrix of order m. We define

H = A⊗B.

Thus, B can be considered as the case that A = (1) for m = 1.

Theorem 4. Assume that either both a and b are shift-distinct quadratic
sequences with P = IN or at least one of them is not a quadratic sequence
with l(a) + l(b) < 2n−1 − 1. Then B is a CNC Hadamard matrices with
order 2n+1, and for two rows b and b′ in B, b � ±b′ and b− � ±b′−.
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In order to prove Theorem 4, we need some properties of the quadratic
residue sequences summarized in the following property.

Property 3. (a) If a is a binary 2-level autocorrelation sequence, then
l(a) ≤ 2n−1 − 1. The upper bound is achieved by a quadratic residue
sequence.

(b) There are only two shift-distinct quadratic residue sequences with
period N = 2n − 1 where N is a prime and N ≡ 3 (modN), say a
and b. Note that a and b are reciprocal. Thus, b can obtained from
a by two methods, i.e., b0 = a0 = 1, and bi = ai + 1 or bi = aN−i, i =
1, · · · , N − 1. The crosscorrelation of a and b is bounded by 3. Thus
a + Lk(b) has maximum 2n−1 − 3 zeros in one period.

Proof of Theorem 4. We first need to prove the CNC property of B. How-
ever, a proof can be given in a similar way as the proof for Theorems 1- 2
where the length of zero runs in the investigated sequences are bounded
by Property 3, we omit it here (the reader can find the proof in the full
version of this work). Thus, B is a CNC Hadamard matrix and for any
two rows b− and b′− in B−, b− � ±b′−. Note that if there are two rows
in B which are shift equivalent, then the overlapping patterns in those
two rows have the length patterns by adding 1 or subtracting 1 in the
case of the reduced form of B for which the zeros and their correspond-
ing elements are excluded. Thus, a similar argument to prove the CNC
property of B can be applied to this case. Thus, for two rows b and b′ in
B, b � −± b′.

�

Remark 2. In [8], it is proved that B is a CNC Hadamard by using bRN
where a and b could be the same, and the bound for the linear span is
shown to be l(a) + l(b) + max{l(a), l(b)} ≤ N =⇒ l(a) ≤ N/3 when
l(a) = l(b). The result obtained in Theorem 4 is an improvement, since
if a � b, we could use both b and bRN , and the bound on the linear
span is larger, i.e., l(a) ≤ N/2 when l(a) = l(b). Theorem 4 also shows
that if both a and b are shift-distinct quadratic residue sequences with
P = IN , then the result is true without imposing any conditions on the
linear span of the sequences.

Theorem 5. With the notation in Construction 3, let A be a CNC Hadamard
matrix of order m > 1 such that u � ±v where u and v are any two rows
from A. Then H = A ⊗ B, as constructed in Construction 3, is a CNC
Hadamard matrix with order m2n+1.
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Proof. Let e and d be two different rows in B. From Theorem 4, e � ±d.
From the construction of B in Construction 3, j̃ is not a row in B. Thus for
m > 3 both A and B satisfy the conditions in Theorem 3. Therefore, H
is a CNC Hadamard matrix. Note that if m = 3, there are no Hadamard
matrices [2].

For m = 2, we have A =

(
1 1

1 −1

)
. In this case, H = A ⊗ B =(

B B

B −B

)
. For any two rows from H−, if they are taken from the upper

half of H−, then they are shift distinct, since any two rows in B are shift
distinct (similar arguments as that in the proof of Theorem 3). If one
row from the upper half of H and the other from the lower half or both
from then lower half then the argument can be proceeded similarly as the
proofs Theorems 1-2, we omit it here due to the lack of space.

Thus H is a CNC Hadamard matrix.

5 Related Functions and LCZ Signal Sets

Let q = pn and H = (ωaij ) be a CNC Hadamard matrix of order q
constructed using one of the constructions in Sections 2 and 3, where ω
is a pth primitive root of unity α. Let α be a primitive element in Fq.
We construct a family of functions from Fq to Fp as follows. For each
i = 0, · · · , q − 1, let fi(α

j) = aij , 0 ≤ j < q and fi(0) = 0 (recall H is
in the normal form). Then S = {fi(x) | 1 ≤ i < q} is a set consisting of
q − 1 functions which satisfy the three conditions listed in Section 1-C.
In addition, S has maximum size.

Let d = (qm−1)/(q−1). According to the work in [5], we can construct
LCZ signal sets with parameters (qm−1, q−1, 1, d) with maximum size as
follows. A function h(x), from Fqm to Fq, is said to be difference balanced
if for any 0 6= λ ∈ Fqm and a ∈ Fq, h(x)− h(λx) = a has qm−1 solutions
in Fqm . We say that h(x) is Fq-linear if h(ax) = ah(x). Let β a primitive
element in Fqm , and h(x) be a function from Fqm to Fq with the difference
balance property and Fq-linear property. Let gi(x) = fi(x) ◦ h(x), for
1 ≤ i < q and where ◦ is the composition operator. Then the evaluation
of gi(x) at β, denoted as ai, is a 2-level autocorrelation sequence over Fp
with period qm−1. The construction for 2-level autocorrelation sequences
is referred to as a subfield decomposition construction in [4]. Hence K =
{ai | 1 ≤ i < q} is an LCZ set with parameters (qm − 1, q − 1, 1, d).
(Note. Here we replace the 2-tuple balance property for h(x) in [5] by
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the difference balance and Fq-linear.) All LCZ signal sets corresponding
to CNC Hadamard matrices constructed from Construction 1 for h >
1, Construction 2, Construction 3 for m > 1 and the case employing
quadratic sequences for m = 1, are new. In the cases from Construction
1 for h = 1 and Construction 3 for m = 1 give LCZ signal sets with the
improved results.

6 Concluding Remarks

In this work, we present three new constructions for CNC Hadamard
matrices. The first construction is obtained by alternating the column
blocks and the flipped column blocks in the circular matrix generated by
a 2-level autocorrelation sequence over Fp. Then we have showed that
the Kronecker product of two CNC Hadamard matrices A and B is still
a CNC Hadamard matrix provided that the row shift-distinctness also
holds in those two CNC Hadamard matrices and the alternating vector
is not a row vector of either A or B. The third construction is given by
a combination of the Kronecker product and the circular matrices gener-
ated by 2-level autocorrelation sequences. The first and third construction
contain two known constructions in [8] as special cases, but with improved
bounds for the restrictions on the linear spans of 2-level autocorrelation
sequences and new cases. Note that the third known construction for CNC
Hadamard matrices in the literature is presented in [5], which is not any
special case of the three constructions obtained in this work.

It is worth to point out that for the binary case, there are other
constructions for Hadamard matrices which also give CNC Hadamard
matrices. For example, the Hadamard matrices from the Turyn construc-
tion [14] [15] [7] are CNC Hadamard matrices. This can be easily seen
from the construction from many examples, but work is needed to write
out the proof. We currently work on that. In general, the orders of those
Hadamard matrices are not powers of 2. Note that the motivation for the
investigation of the CNC property is for the constructions of a set con-
sisting of 2n functions from F2n to F2 which satisfies that each function in
the set is balanced, the sum of any two function is balanced, and any two
functions, considered as sequences with period 2n − 1, are shift distinct.
If the order of a CNC Hadamard matrix is not 2n, then its correspond-
ing function from F2n to F2 is not balanced. Thus, those types of CNC
Hadamard matrices cannot be used in the construction of low correlation
zone sequences with parameters (qm − 1, q − 1, 1, q

m−1
q−1 ) where q = 2n.

However, the problem itself is interesting theoretically.
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