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Abstract

This thesis studies the transition matrix of a quantum walk on strongly
regular graphs. It is proposed by Emms, Hancock, Severini and Wilson in
2006, that the spectrum of S+(U3), a matrix based on the amplitudes of
walks in the quantum walk, distinguishes strongly regular graphs.

We begin by finding the eigenvalues of S+(U) and S+(U2) for regular
graphs. We also show that if two graphs G and H are isomorphic, then the
corresponding matrices S+(U3) are cospectral. We then look at the entries
of the cube of the transition matrix and find an expression for S+(U3) in
terms of the adjacency matrix and incidence matrices of the graph.
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Introduction

A graph G and a graph H are isomorphic if there is a bijective mapping of the
vertices of G onto the vertices of H which preserves adjacency. Isomorphic
graphs are usually treated as the same graph and the set of graphs isomorphic
to a given graph is called the isomorphism class. The Graph Isomorphism
Problem is the problem of deciding whether or not two given graphs G and
H belong to the same isomorphism class.

The adjacency matrix of a graph G is a matrix A(G) whose rows and
columns are indexed by the vertices of G and

(A(G))i,j =

{
1 if i, j are adjacent,

0 otherwise.

The spectrum of a graph is the set of the eigenvalues of its adjacency matrix.
The following theorem is well-known and found in [9, p.164].

0.0.1 Theorem. If two graphs G and H are isomorphic, then there exists a
permutation matrix P such that

A(G) = PA(H)P−1.

From this, we can see that if two graphs are isomorphic, then they are
cospectral, which is to say that their adjacency matrices have the same spec-
trum. However, it is not true that if two graphs are cospectral then they are
isomorphic. Strongly regular graphs are a class of graphs for which any two
strongly regular graphs with the same parameters are cospectral.

A graph is said to be regular with valency k if each vertex has k neigh-
bours. A graph G on n vertices is said to be strongly regular with parameters
(n, k, a, c) if G is regular with valency k, every pair of adjacent vertices of G
have a common neighbours and every pair of non-adjacent vertices of G have
c common neighbours, where a and c are constants and 0 < k < n− 1.
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INTRODUCTION

With regard to complexity, the Graph Isomorphism Problem is NP, but
is not known to be NP-complete; Schöning shows in [12] that the Graph
Isomorphism Problem is not NP-complete unless the polynomial-time hier-
archy collapses. There is also no known polynomial-time algorithm for Graph
Isomorphism. This implies that Graph Isomorphism lies in the class of prob-
lems, along with factoring, where it is speculated that quantum algorithms
can exceed classical algorithms in efficiency.

In [6, 5], Emms, Severini, Wilson and Hancock propose that the quantum
walk transition matrix can be used to distinguish between non-isomorphic
graphs. Given a matrix M , the positive support of M , denoted S+(M), is
the matrix obtained from M as follows:

(S+(M))i,j =

{
1 if Mi,j > 0

0 otherwise.

They conjecture that the spectrum of S+(U3) is a graph invariant for strongly
regular graphs, where U is the transition matrix of a quantum walk.

Conjecture. [5] If G and H are strongly regular graphs, then S+(U(G)3)
and S+(U(H)3) are cospectral if and only if G and H are isomorphic.

Through experimental results, they see that this proposed invariant dis-
tinguishes many more graphs than does the spectrum of the adjacency ma-
trix. In particular, no strongly regular graph is known to have a cospectral
mate with respect to this invariant. In particular, the proposed procedure
would imply a polynomial-time classical algorithm for testing graph isomor-
phism on strongly regular graphs.

In this thesis, we study the properties of S+(U3). We show that S+(U(G)3)
and S+(U(H)3) are cospectral if G and H are isomorphic. In [6, 5], the au-
thors find the eigenvalues of S+(U) and S+(U2) for strongly regular graphs.
However their proof is incomplete; in particular, they mention that they are
not able to fully specify the multiplicities of ±1 as eigenvalues of S+(U) and
the multiplicity of 2 as an eigenvalue of S+(U2). Using the methods of [8], we
find the eigenvalues of S+(U) for any regular graph of valency k where k ≥ 2,
and offer a complete proof in Chapter 2. We also resolve the eigenvalues of
S+(U2) by showing that

S+(U2) = S+(U)2 + I

for any regular graph of valency k, where k ≥ 2.

2



INTRODUCTION

In [5], the authors find the value of (U3)i,j given arcs i and j through a
case analysis for a strongly regular graph. Here, we present a more thorough
case analysis and, in addition, we show that, under some restriction of the
parameters of the strongly regular graph, for each case of the case analy-
sis, there always exists a pair of arcs i and j belonging to the case. Thus,
we show, in Chapter 3, that if G is a primitive strongly regular graph G
with parameters (n, k, a, c), if a ≥ 2 and c ≥ 2, then the entries U(G)3 are
determined by (n, k, a, c).

The authors of [5, 6] suggest that S+(U3) is a good candidate for a graph
invariant because it seems that its eigenvalues do not depend on the eigenval-
ues of the adjacency matrix and it is difficult to write an expression for the
eigenvalues of S+(U3). In Chapter 4 We find S+(U3) as a sum of matrices
that are products of the adjacency matrix and other incidence matrices of
G, in order to better consider the eigenvalues. Let D be the digraph of G
and consider the following incidence matrices of D, both with rows indexed
by the vertices of D and columns indexed by the arcs of D:

(Dh)i,j =

{
1 if i is the head of arc j

0 otherwise

and

(Dt)i,j =

{
1 if i is the tail of arc j

0 otherwise.

Following the case analysis to find the entries of U3, we show that for a
strongly regular graph G with parameters (n, k, a, c), if a ≥ 1 and c ≥ 1,
a ≤ k

2
and c ≤ k

2
, then

S+(U3) = J −DT
t ADt −DT

hADh + (DT
hADh) ◦ (DT

t ADt) +DT
hDt − P

and, if a > k
2

and c > k
2
, then

S+(U3) = J − (DT
hADh) ◦ (DT

t ADt) +DT
hDt − P.
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Chapter 1

Strongly Regular Graphs

Recall that an isomorphism from graph G to graph H is an isomorphism
from the vertex set of G to the vertex set of H which preserves the adjacency
relations of G. It is clear that any isomorphism must take a vertex of G
with k neighbours to a vertex of H that has k neighbours. Thus, some
graphs can be distinguished by the multiset of the number of neighbours of
its vertices. This naive approach fails in general and, in particular, in the
case where every vertex of G and H have the same number of neighbours. A
finer requirement for G and H to be isomorphic is that an isomorphism must
map a pair of vertices u and v of G to a pair of vertices in H with the same
number of common neighbours. Here again, we are able to find families of
graphs such that this condition is not sufficient. For strongly regular graphs,
in particular, every pair of vertices u, v has some constant number of common
neighbours, where the constant only depends on the adjacency of u and v.

Graph isomorphism remains an interesting problem for strongly regular
graphs because simple necessary conditions for isomorphisms fail to be suf-
ficient. In this chapter, we will present the definitions and well-known facts
about strongly regular graphs. Since we are interested in examining the
graph isomorphism problem for strongly regular graphs, it is interesting and
necessary to examine strongly regular graphs that not only have the same
parameter set, but also result from the same construction method. Any two
strongly regular graphs generated from generalized quadrangles of the same
parameters have many common attributes. For example, the size of the
maximum clique and the number of maximum cliques will be the same. In
Section 1.2, we will look at constructing strongly regular graphs from gener-
alized quadrangles as well as two constructions of generalized quadrangles.

5



1. STRONGLY REGULAR GRAPHS

1.1 Definitions and Basic Concepts

Recall that a graph is said to be regular with valency k if each vertex has
k neighbours. A graph on n vertices, G, is said to be strongly regular with
parameters (n, k, a, c) if G is regular with valency k, every pair of adjacent
vertices of G have a common neighbours and every pair of non-adjacent
vertices of G have c common neighbours, where a and c are constants and
0 < k < n − 1. Note that the complete graph and its complement are not
strongly regular graphs. The following facts about strongly regular graphs
are well-known and can be found in any standard text on algebraic graph
theory. See Godsil and Royle’s Algebraic Graph Theory [9].

The complement of a graph G is a graph G with vertex set V (G) and
vertices u and v are adjacent in G if and only if u and v are not adjacent
in G. If a graph is strongly regular with parameters (n, k, a, c), then its
complement is strongly regular and has parameters

(n, n− k − 1, n− 2− 2k + c, n− 2k + a).

If a strongly regular graph X and its complement are both connected, X
is said to be primitive. Otherwise, X is said to be imprimitive. It can be
easily seen that an imprimitive strongly regular graph is a disjoint union of
complete graphs. The smallest example of a primitive strongly regular graph
is the cycle on five vertices.

If G and H are both strongly regular graphs with the same parameter
set, then G are H are said to be coparametric.

The adjacency matrix of a graph G is a matrix A(G) whose rows and
columns are indexed by the vertices of G and

Ai,j =

{
1 i, j are adjacent,

0 otherwise.

We may write A for A(G) if the graph is clear from the context. The spectrum
of a matrix is the list of its eigenvalues. The spectrum of a graph is the
spectrum of its adjacency matrix. If two graph G and H have the same
spectrum then they are said to be cospectral and H is said to be a cospectral
mate of G. We will see that, for strongly regular graphs, being coparametric
implies being cospectral.

If A is the adjacency matrix of a strongly regular graph G with parameters
(n, k, a, c), then A has three distinct eigenvalues k, θ and τ with multiplicities

6



1.2. GENERALIZED QUADRANGLES

1, mθ and mτ respectively, where

θ =
(a− c) +

√
(a− c)2 + 4(k − c)

2
,

τ =
(a− c)−

√
(a− c)2 + 4(k − c)

2
,

mθ =
1

2

(
(n− 1)− 2k + (n− 1)(a− c)√

(a− c)2 + 4(k − c)

)
, and

mτ =
1

2

(
(n− 1) +

2k + (n− 1)(a− c)√
(a− c)2 + 4(k − c)

)
.

Thus, we see that the spectrum of a strongly regular graph depends only
on its parameters; all co-parametric strongly regular graphs have the same
spectrum. Further, we have the following lemma, found in [9, p.220], which
details one of the fundamental algebraic properties of strongly regular graphs.

1.1.1 Lemma. A connected, regular graph is strongly regular if and only if
it has exactly three distinct eigenvalues.

1.2 Generalized Quadrangles

Finding strongly regular graphs with a given parameter set is often a non-
trivial task. Classes of strongly regular graphs with parameter sets (n, k, a, c)
are well-understood when n is sufficiently small. However, the number of
strongly regular graphs with a given parameter set is not known in general.
The reader is referred to [2] for a list of parameter sets of strongly regular
graphs.

Some known constructions for strongly regular graphs arise from combina-
torial objects including orthogonal arrays, partial geometries and generalized
quadrangles. We will look, in particular, at reducing the problem of generat-
ing strongly regular graphs to generating generalized quadrangles. We refer
to [10] for the presented information about generalized quadrangles and to
[15] for incidence structures.

7



1. STRONGLY REGULAR GRAPHS

1.2.1 Strongly Regular Graphs from Generalized Quad-
rangles

A generalized quadrangle is a special type of incidence structure, a general
object commonly used in design theory. An incidence structure is a triple
S = (P ,B, I) where:

i) P is a set, whose elements are called points,

ii) B is a set, whose elements are called blocks and

iii) I is a subset of P × B and is called an incidence relation.

For p ∈ P and ` ∈ B, if (p, `) ∈ I then the point p and the block ` are said
to be incident.

A generalized quadrangle is an incidence structure S = (P ,B, I) such
that:

i) each point is incident with t+ 1 blocks and any two points are incident
with at most one block,

ii) each block is incident with s+ 1 points and any two blocks are incident
with at most one point, and

iii) for every x ∈ P and L a block in B not incident with x, there exists a
unique pair of point and block, say (y,M), where x is incident with M ,
M is incident with y and y is incident with L.

We say that (s, t) is the order of S. We often refer to the blocks of a gener-
alized quadrangle and other incidence structures as lines. In general, if two
points are incident with the same line, we say that they are collinear. If two
lines are incident with the same point, we say that they are intersecting lines.

For a generalized quadrangle S = (P ,B, I) of order (s, t), consider a line
L. Then, L is incident with s+1 points. For each point, x, not incident with
L, there is a unique line M intersecting L such that x and M are incident.
There are (s+1)t lines that intersect L, each containing s points not incident
with L. Then, by counting the points incident and not incident to L, we get

|P| = (s+ 1) + (s+ 1)ts = (s+ 1)(st+ 1)

By symmetry, we see that |B| = (t+ 1)(st+ 1).
The following theorem gives the connection between strongly regular

graphs and generalized quadrangles and can be found in [10, p.291].

8



1.2. GENERALIZED QUADRANGLES

1.2.1 Theorem. For a generalized quadrangle S = (P ,B, I) of order (s, t),
let G be the graph whose vertices are the points of S and two vertices are
adjacent if the points are collinear in S. Then, G is a strongly regular graph
with parameters

((s+ 1)(st+ 1), s(t+ 1), s− 1, t+ 1)

We may refer to the graph obtained in this way as the point graph of the
generalized quadrangle. The dual of a generalized quadrangle S = (P ,B, I)
of order (s, t) is T = (B,P , I). We can see that T has order (t, s).

Let N be the incidence matrix of S; that is, N has rows indexed by the
points of S, columns indexed by the lines of S and

Ni,j =

{
1 if i, j are incident,

0 otherwise.

We see that NT is the incidence matrix of the dual of S. Further, we can
consider NNT . The (i, j)th entry of NNT is the number of lines incident to
both points i and j. Since S is a generalized quadrangle, each pair of distinct
points is incident with at most one line. Then (NNT )i,j is either 0 or 1 when
i 6= j and (NNT )i,i is t + 1, the number of lines incident to a given point.
Let Ix×x be the x × x identity matrix. By the definition of point graph, we
see that the adjacency matrix of the point graph of S is

NNT − (t+ 1)I|P|×|P|

and the adjacency matrix of the point graph of the dual of S is

NTN − (s+ 1)I|B|×|B|.

1.2.2 A Construction of Generalized Quadrangles

Theorem 1.2.1 gives the construction of a strongly regular graph from a gen-
eralized quadrangle. It would be useful to have a construction of generalized
quadrangles. We give two constructions of generalized quadrangles. We will
consider strongly regular graphs generated from these constructions in con-
junction with quantum walks.

Let V be a vector space of dimension p over GF (q). A projective space of
projective dimension p−1 over GF (q), denoted PG(p−1, q), is an incidence

9



1. STRONGLY REGULAR GRAPHS

structure where the points are the 1-dimensional subspaces of V , the blocks
are the 2-dimensional subspaces of V and the incidence structure is as follows:
a point p is incident to a block B if p is contained in B as a subspace. If q is
even, an hyperoval in PG(p− 1, q) is a set of q + 2 points of which no three
points are collinear.

The following construction, the first that we will look at, is found in [10,
p. 38].

Consider a projective space P = PG(3, q), for some q, with H = PG(2, q)
embedded as a hyperplane of P . Let O be a hyperoval in H. Let P be the set
of points of P−H and B be the lines of P not contained in H and which meet
O. Let I be the incidence relation on P and B inherited from the incidence
relation of the points and lines of P . The incidence structure (P ,B, I) is
denoted T ∗2 (O) in the literature. The proof the following theorem, which is
not difficult, can be found in [10, p. 38].

1.2.2 Theorem. If {P ,B, I} are defined as above, then T ∗2 (O) = (P ,B, I)
is a generalized quadrangle of order (q − 1, q + 1).

Similar to the isomorphism of graphs, two generalized quadrangles S and
T are isomorphic if there is a bijective mapping between from the points and
blocks of S to those of T which preserves the incidence relation. We have
further that we can generate generalized quadrangles of the same parameters
by this method using the following theorem, found in [1].

1.2.3 Theorem. If O1 and O2 are both hyperovals in PG(2, q), then T ∗2 (O2)
is isomorphic to T ∗2 (O1) if and only if there is an isomorphism of PG(3, q)
which takes O1 to O2.

The second construction is referred to as W (q) in the literature. We
will present the construction without proof, which can be found in [9, p.
83-84]. We consider PG(3, q) and let V be the vector space of dimension
4 over GF (q). The points and lines of PG(3, q) are the 1-dimensional and
2-dimensional subspaces of V , respectively. Let H be as follows:

H =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .

We say that a subspace S of V , and, by extension, a point or a line of
PG(3, q), is totally isotropic if uTHv = 0 for all u, v in S. Let W (q) be

10



1.2. GENERALIZED QUADRANGLES

the incidence structure where the points are the totally isotropic points of
PG(3, q), the lines are the totally isotropic lines of PG(3, q) and the incidence
structure is inherited from PG(3, q).

1.2.4 Theorem. W (q) is a generalized quadrangle with order (q, q).

We note that the dual of W (q) is isomorphic to W (q) if and only if q is
even. If q is odd, the dual of W (q) is a generalized quadrangle with order
(q, q) and its point graph is coparametric with the point graph of W (q).

For a vertex v in the point graph of any generalized quadrangle of order
(s, t), we see that the neighbourhood of v is a union of t+ 1 disjoint cliques
of size s + 1. This follows since from every point lies on t + 1 blocks and
each block has s+ 1 points and any two blocks can intersect in at most one
point. Thus, every strongly regular graph constructed from a generalized
quadrangle of order (s, t) has isomorphic neighbourhoods. This similarity in
the structure of the point graphs of generalized quadrangles motivate looking
at such graphs in the context of graph isomorphism.
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Chapter 2

Quantum Walks

A quantum walk is a quantum process on a graph. In this chapter, we in-
troduce the concept of a quantum walk and how it might be used to detect
graph isomorphism. In Section 2.1, we present basic definitions about quan-
tum walks. In Section 2.2, we give an overview of quantum walk algorithms
for the Graph Isomorphism problem. Then, we present the quantum walk
procedure of Emms, Severini, Wilson and Hancock, which is the main focus
of this dissertation. In Section 2.3, we present the procedure and perform
eigenvalue analysis in Sections 2.4.1 and 2.4.2.

2.1 Discrete-time Quantum Walks

For a graph G, the digraph of G is the digraph on V (G) with arcs xy and
yx for each edge {x, y} in E(G). A discrete-time quantum walk is a process
on a graph G whose state space is the set of arcs in the digraph of G and,
at each time t, the walk moves from arc uv to arc wx if v = w with some
amplitude. In other words, if |ψt〉 is the state vector at time t, then the state
vector at time t+ 1 is |ψt+1〉 = U |ψt+1〉, where

Uwx,uv =


2

d(v)
if v = w and u 6= x,

2
d(v)
− 1 if v = w and u = x,

0 otherwise.

We say that U is the transition matrix of the quantum walk. We will write
U(G) when the context is unclear.

13



2. QUANTUM WALKS

Following [8], we can arrive at another formulation for the transition
matrix of a quantum walk on a graph G. We represent by A(G) the adjacency
matrix of G and, when there is no confusion, we write A for simplicity. Let
D be the digraph of G and consider the following incidence matrices of D,
both with rows indexed by the vertices of D and columns indexed by the
arcs of D:

(Dh)i,j =

{
1 if i is the head of arc j

0 otherwise

and

(Dt)i,j =

{
1 if i is the tail of arc j

0 otherwise.

We see that

(DhD
T
t )i,j =

{
1 if there exists arc(i, j)

0 otherwise.

From this we see that DhD
T
t = A(G).

The line digraph of a graph G is the graph L(G) whose vertices are the
arcs of D, the digraph of G, where there is an edge (ab, xy) in L if ab and xy
are arcs such that b = x. We see that A(L) = DT

t Dh, in particular that

(DT
t Dh)wx,uv =

{
1 if v = w,

0 otherwise.

Let P be a permutation matrix with row and columns indexed by the arcs
of D such that,

Pwx,uv =

{
1 if x = u is the tail of arc w = v

0 otherwise.

In particular, if G is regular with valency k, we see that

U =
2

k
DT
t Dh − P =

2

k
A(L)− P.

2.2 Quantum Walk Algorithms for Graph Iso-

morphism

The Graph Isomorphism problem is the problem of deciding whether or not
two given graphs belong to the same isomorphism class. There has been

14
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recent interest in using the concept of quantum walks to develop classical
algorithms. Such algorithms use some aspect of quantum walks on graphs
and are implementable in polynomial time. A simple algorithm for the Graph
Isomorphism Problem is to evolve a quantum walk on the given two graphs
for some number of steps, then compare a permutation-invariant aspect of the
states of the quantum walk on each graph. For example, one can compare the
two sets of amplitudes resulting from the quantum walk on the two graphs.
If there is an amplitude that occurs in one set and not the other, then the
graphs are distinguished. An early algorithm of this type is that of Shiau,
Joynt and Coppersmith, in [13].

Another classical algorithm based on the simple algorithm is the algo-
rithm of Douglas and Wang in [4]. This algorithm compares the two sets of
amplitudes resulting from the quantum walk on the two graphs, along with
a phase factor. In each graph, a reference node is chosen and the vertices are
partitioned into three sets; one set containing just the reference node, one
set containing the neighbours of the reference node and one set containing
the rest of the vertices for the graph. The phase factor is determined by two
sets the quantum walk is moving between. Douglas and Wang propose this
algorithm for general graphs, including strongly regular graphs.

In [7], Gamble, Friesen, Zhou and Joynt propose that quantum walks of
interacting bosons distinguish non-isomorphic pairs of graphs. Jamie Smith,
in [14], showed that this approach does not work for general graphs, using
a relation on graphs relying on their association schemes to generate a class
of counterexamples. The counterexample graphs are, however, not strongly
regular.

The main algorithm that this dissertation is concerned with is the pro-
cedure of Emms, Severini, Wilson and Hancock, presented in [6, 5]. This
approach compares a matrix obtained from the transition matrix of a quan-
tum walk after evolving the walk for three steps, and will be presented in full
detail in Section 2.3.

For all four algorithms mentioned here, there are experimental results
that suggest that the approaches may distinguish strongly regular graph.
There is no known pair of non-isomorphic strongly regular graphs which are
not distinguished by any of the three algorithms.

15



2. QUANTUM WALKS

2.3 Procedure of Emms, Severini, Wilson and

Hancock

In [6, 5], Emms, Severini, Wilson and Hancock propose that the quantum
walk transition matrix can be used to distinguish between non-isomorphic
graphs. Given a matrix M , the positive support of M , denoted S+(M), is
the matrix obtained from M as follows:

(S+(M))i,j =

{
1 if Mi,j > 0

0 otherwise.

The following theorem is stated without proof in [6, 5].

2.3.1 Theorem. If G and H are isomorphic regular graphs, then S+(U(G)3)
and S+(U(H)3) are cospectral.

Proof. Since G is isomorphic to H, then their line digraphs are also isomor-
phic. From [9, p.164], we know that directed graphs X and Y are isomorphic
if and only if there is a permutation matrix R such that

RTA(X)R = A(Y ).

Since permutation matrices are orthogonal, RT = R−1. Let L(G) and L(H)
be the adjacency matrices of the line graphs of G and H respectively. Then
there exists a permutation matrix Q such that

L(G) = Q−1L(H)Q.

But, from the definition of U , we see that

U(G) = Q−1U(H)Q

and, cubing both sides, we obtain,

U(G)3 = (Q−1U(H)Q)3 = Q−1U(H)3Q

Multiplying a matrix by a permutation matrix does not change its set of
entries. Thus, taking the positive support commutes with conjugation by a
permutation matrix. Then,

S+(U(G)3) = S+(QU(H)3Q−1) = QS+(U(H)3)Q−1

and hence S+(U(G)3) and S+(U(H)3) are similar matrices and hence cospec-
tral.

16



2.4. EIGENVALUES

The authors of [5, 6] propose that the converse of Theorem 2.3.1 is also
true; they conjecture that the spectrum of S+(U3) is a graph invariant for
some classes of graphs. Through experimental results, they see that this
proposed invariant distinguishes many more graphs than does the spectrum
of the adjacency matrix. In particular, no strongly regular graph is known
to have a cospectral mate with respect to this invariant.

2.3.2 Conjecture. [6] IfG andH are strongly regular graphs, then S+(U(G)3)
and S+(U(H)3) are cospectral if and only if G and H are isomorphic.

If Conjecture 2.3.2 is true, it would yield a polynomial-time algorithm for
the Graph Isomorphism Problem on strongly regular graphs.

2.4 Eigenvalues

In [6, 5], the authors compute the spectra of S+(U) and S+(U2) for strongly
regular graphs, showing that they are determined by the spectra of the ad-
jacency matrix. Here we will arrive at the same conclusion through different
means. We will follow the methods in [8] to find the spectrum of S+(U).
Then, we will show that the spectrum of S+(U2) is determined by the spec-
trum of S+(U) by showing that S+(U2) = (S+(U))2 + I, where I is the
identity matrix of appropriate size. Since we are concerned with strongly
regular graphs, it suffices to consider regular graphs with valency k for the
rest of the section.

2.4.1 Spectrum of S+(U)

If G is a regular graph with valency k on n vertices, then

U =
2

k
DT
t Dh − P.

The only negative entries have values 2
k
−1, for k ≥ 2, so S+(U) = DT

t Dh−P .
The only regular graphs that have valency 1 are matchings, so we may assume
k ≥ 2.

From the previous section, we see that

DtD
T
h = DhD

T
t = A(G)

17



2. QUANTUM WALKS

and

DT
t Dh = A(L)

where L is the line digraph of G. We can see further that DtD
T
t = kI and

DhD
T
h = kI. We can show the following theorem based on [8].

2.4.1 Theorem. If G is a regular connected graph with valency k ≥ 2 and
n vertices, then S+(U(G)) has eigenvalues as follows:

i) k − 1 with multiplicity 1,

ii)
λ±
√
λ2−4(k−1)

2
as λ ranges over the eigenvalues of A, the adjacency matrix

of G, and λ 6= k,

iii) 1 with multiplicity n(k−1)
2

+ 1, and

iv) −1 with multiplicity n(k−1)
2

.

Proof. For a matrix M , we write col(M) to denote the column space of M
and ker(M) to denote the kernel of M . Let K = col(DT

h ) + col(DT
t ) and let

L = ker(Dh) ∪ ker(Dt). Observe that K and L are orthogonal complements
of each other. Then Rvk is the direct sum of orthogonal subspaces K and
L. We will proceed by considering eigenvectors of S+(U) in K and in L
separately. For K, we will show that the eigenvectors of S+(U) in K lie in
subspaces C(λ) where λ ranges over the eigenvalues of A. The eigenspace
C(k) has dimension 1 while C(λ) has dimension 2 for all λ 6= k. In L, we
will show that all eigenvectors of S+(U) have eigenvalue ±1 and we will find
their multiplicities.

First, we show that K and L are S+(U)-invariant. Since L is the orthog-
onal complement of K, it suffices to check that K is S+(U)-invariant. We
have that S+(U) = DT

t Dh − P and obtain that:

S+(U)DT
h = (DT

t Dh − P )DT
h = kDT

t −DT
t = (k − 1)DT

t (2.4.1)

and

S+(U)DT
t = (DT

t Dh − P )DT
t = DT

t A−DT
h . (2.4.2)

Then, K is S+(U)-invariant.

18



2.4. EIGENVALUES

Now, we may consider eigenvectors of S+(U) inK. From equations (2.4.1)
and (2.4.2), we obtain:

S+(U)2DT
t = S+(U)(DT

t A−DT
h )

= S+(U)DT
t A− S+(U)DT

h

= S+(U)DT
t A− (k − 1)DT

t

(2.4.3)

Let z be an eigenvector of A with eigenvalue λ. Let y := DT
t z. Then,

applying y to equation (2.4.3), we obtain:

S+(U)2y = S+(U)2DT
t z

= S+(U)DT
t Az− (k − 1)DT

t z

= λS+(U)DT
t z− (k − 1)DT

t z

= λS+(U)y − (k − 1)y.

Rearranging and factoring out y, we get

(S+(U)2 − λS+(U) + (k − 1)I)y = 0. (2.4.4)

Let C(λ) = Span{y, S+(U)y}. From equation (2.4.4) we see that C(λ)
has dimension at most 2, is S+(U)-invariant and is contained in K. If C(λ) is
1-dimensional, then y is an eigenvector of S+(U). Let θ be the corresponding
eigenvalue. Then

θy = S+(U)y

= S+(U)DT
t z

= (DT
t A−DT

h )z

= λDT
t z−DT

h z

= λy −DT
h z

Then (θ−λ)y = −DT
h z and z is in col(DT

h )∩col(DT
t ). Then y is constant on

arcs with a given head and on arcs with a given tail. Then y is constant on
arcs of any component of G. Since G is connected, y is the constant vector,
which implies that z is a constant vector and λ = k. The eigenvalue of S+(U)
corresponding to y is k − 1.

Now suppose C(λ) is 2-dimensional. Then, the minimum polynomial of
C(λ) is

t2 − λt+ (k − 1) = 0
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2. QUANTUM WALKS

from (2.4.4) and the eigenvalues are

λ±
√
λ2 − 4(k − 1)

2
.

These subspaces C(λ) account for 2n − 1 eigenvalues of S+(U). Since
DT
h and DT

t are both (nk)× n matrices, K has dimension at most 2n. But,
DT
h j = DT

t j = j, where j is the all ones vector, since each row of both DT
h

and DT
t has exactly one entry with value 1 and all other entries have value

0. Then, K has dimension at most 2n − 1 and we have found all of the
eigenvectors of S+(U) in K. We will now turn our attention to eigenvectors
of S+(U) in L, where we hope to find the remaining n(k− 2) + 1 eigenvalues
of S+(U). Let y be in L. Then

S+(U)y = (DT
t Dh − P )y

= DT
t Dhy − Py

= −Py.

If y is an eigenvector of S+(U) with eigenvalue λ and y is in L, then y is
an eigenvector of P with eigenvalue −λ. Since P is a permutation matrix,
λ = ±1.

To find the multiplicities we consider the sum of all the eigenvalues of
S+(U), which is equal to the trace of S+(U). Since arc ij cannot be the
reverse arc of itself, P is a traceless matrix. Then

tr(S+(U)) = tr(DT
t Dh − P ) = tr(DT

t Dh) = tr(DhD
T
t ) = tr(A) = 0.

The sum over all eigenvalues of S+(U) should be 0. Let sp(A) be the set of
eigenvalues of A. Consider the sum over the eigenvalues of eigenvectors of
K:

(k − 1) +
∑

λ∈sp(A),λ 6=k

λ±
√
λ2 − 4(k − 1)

2

= (k − 1) +
∑

λ∈sp(A),λ 6=k

λ

= −1 +
∑

λ∈sp(A)

λ

= −1.

Then, the sum of the eigenvalue of the eigenvectors over L is 1. So, 1 and
−1 have multiplicities n(k−2)

2
+ 1 and n(k−2)

2
, respectively.
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2.4.2 Spectrum of S+(U 2)

We will show that S+(U2) = (S+(U))2 + I. Then, the eigenvalues of S+(U2)
are determined by the eigenvalues of S+(U). The proof of the theorem will
proceed by an analysis of which pair of arcs give a negative entry in U2,
similar to the ideas which we will later use in Chapter 3.

2.4.2 Theorem. For any regular graph with valency k, if k > 2 then
S+(U2) = S+(U)2 + I.

Proof. Since DT
t Dh is the adjacency matrix of the line digraph of G, then

(DT
t Dh)

2 has the property that its (j, i)th entry counts the number of length
two, directed walks in the line digraph of G. Observe that there is such a
walk from i to j in L(G) if and only if the head of i is adjacent to the tail
of j in G. In particular, if there is a walk of length two from i to j, there
is only one such walk. Then, (DT

t Dh)
2 is a 0-1 matrix and is the support

of U2. We will find the required expression for S+(U2) by subtracting from
(DT

t Dh)
2 the entries which have negative value in U2.

We then proceed to look at the possible arrangements of i and j such
that there is a length two, directed walk in L(G) from i to j, in Table 2.1.

We see that the only negative entries of U2 occur for i, j in Cases 3 and
4, when k > 2. Then (U2)j.i is negative when i and j share the same head
but not the same tail and when i and j share the same tail but not the same
head. Then,

S+(U2) = (DT
t Dh)

2 − (DT
t Dt − I)− (DT

hDh − I)

= (DT
t Dh)

2 −DT
t Dt −DT

hDh + I + I

= (DT
t Dh)

2 − (DT
t Dh)P − P (DT

t Dh) + P 2 + I

= (DT
t Dh − P )2 + I

From 2.4.1, we know that S+(U) = DT
t Dh − P . Then, we have that

S+(U2) = S+(U)2 + I.

The next theorem explicitly lists the eigenvalues of S+(U2).

2.4.3 Theorem. If G is a regular connected graph with valency k ≥ 2 and
n vertices, then S+(U(G)2) has eigenvalues as follows:
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Directed walk of length 3
from i to j

Value of (U2)i,j

Case 1. i j

(
2

k

)2

Case 2.

i

j

(
2

k

)2

Case 3. i j

(
2

k

)(
2

k
− 1

)

Case 4.

i

j

(
2

k
− 1

)(
2

k

)

Case 5.

i

j

(
2

k
− 1

)2

Table 2.1: All possible pairs i, j such that there is a length 2 walk in L(G)
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i) k2 − 2k + 2 with multiplicity 1,

ii) λ2−2k+4
2
±λ
√
λ2−4(k−1)

4
as λ ranges over the eigenvalues of A, the adjacency

matrix of G, and λ 6= k and

iii) 2 with multiplicity n(k − 1) + 1.

Proof. From Theorem 2.4.2, we get that S+(U2) = (S+(U))2 + I. Let y be
an eigenvector of S+(U) with eigenvalues θ. Then,

S+(U2)y = ((S+(U))2 + I)y

= (S+(U))2y + Iy

= θ2y + y

= (θ2 + 1)y.

Then, y is an eigenvector of S+(U2) with eigenvalue θ2 + 1. From Theorem
2.4.1, we know the eigenvalues of S+(U) are:

i) k − 1 with multiplicity 1,

ii)
λ±
√
λ2−4(k−1)

2
as λ ranges over the eigenvalues of A, the adjacency matrix

of G, and λ 6= k,

iii) 1 with multiplicity n(k−1)
2

+ 1, and

iv) −1 with multiplicity n(k−1)
2

.

Then, squaring each eigenvalue and adding 1, we obtain the eigenvalues of
S+(U2) as follows:

(k − 1)2 + 1 = k2 − 2k + 2,(
λ±

√
λ2 − 4(k − 1)

2

)2

+ 1 =
λ2 − 2k + 4

2
±
λ
√
λ2 − 4(k − 1)

4

and 12 + 1 = (−1)2 + 1 = 2. The multiplicities are retained from the multi-
plicities of the eigenvalues of S+(U).
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2.5 Computations

We carried out computations of the spectrum of S+(U3) for some graphs. In
some cases, we confirm the results of [6, 5] and we also find new graphs that
are distinguished by the procedure. We computed the spectrum of S+(U3)
for strongly regular graphs of the following parameter sets:

• (16, 6, 2, 2),

• (25, 12, 5, 6),

• (26, 10, 3, 4),

• (28, 12, 6, 4),

• (29, 14, 6, 7),

• (40, 12, 2, 4) and

• (45, 12, 3, 3).

We find that all graphs in the listed parameter classes are distinguished
by the spectrum of S+(U3), confirming the results in [6, 5]. In addition,
we looked at graphs with algebraic constructions which were not studied in
[6, 5], including the Paley and Peisert graphs.

The Paley graph, denoted P (q), has the elements of GF (q) as vertices,
where q is a prime power such that q ≡ 1(mod 4). Two vertices are adjacent
if their difference is a nonzero square in GF (q). More information can be
found in [9]. The Peisert graph, denoted P∗(q) is defined for q = pr where p
is a prime and p ≡ 3(mod 4) and r is even. Let a be a generator of GF (q)
and let M be a subset of GF (q) as follows:

M = {aj : j ≡ 0, 1(mod 4)}.

The vertices of P∗(q) are the elements of GF (q) and two vertices are adjacent
if their difference is in M . Peisert graphs were first defined by Peisert in [11].
The Paley graph P (q) and the Peisert graph P∗(q) are strongly regular with
parameters (

q,
q − 1

2
,
q − 5

4
,
q − 1

4

)
.
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It is interesting to compare the Paley graphs to the Peisert graphs because it
is shown in [11] that the set of self-complementary, symmetric graphs consists
of the Paley graphs, the Peisert graphs and one graph not belonging the two
previous families of graphs.

• The Paley graph P (49) and Peisert graph P∗(49) are non-isomorphic
strongly regular graphs with parameters (49, 24, 11, 12) and are distin-
guished by the spectrum of S+(U3).

• The Paley graph P (81) and Peisert graph P∗(81) are non-isomorphic
strongly regular graphs with parameters (81, 40, 19, 20) and are distin-
guished by the spectrum of S+(U3).

• The point graph of W (3) and the point graph of the dual of W (3) non-
isomorphic strongly regular graphs with parameters (40, 12, 2, 4) and
are distinguished by the spectrum of S+(U3).

• The point graph of W (5) and the point graph of the dual of W (5) non-
isomorphic strongly regular graphs with parameters (156, 30, 4, 6) and
are distinguished by the spectrum of S+(U3).

It is worth remarking that, although the spectrum of S+(U3) distin-
guished the point graphs of W (q) and its dual for q = 3 and q = 5, the
characteristic polynomials have a large common factor.
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Chapter 3

Analysis of the Entries of U3 for
Strongly Regular Graphs

In this chapter, we wish to understand the structure of the cube of the
transition matrix for strongly regular graphs. In order to understand the
positive support of U3, we will look at possible entries of U3 in Section 3.1
and for which graphs these entries occur, in Section 3.2.

For the purposes of showing that S+(U3) can be constructed directly from
G, without first constructing the matrix U , the authors of [5] do a similar
case analysis for finding the value of (U3)wx,uv given arcs uv and wx. In each
case, they find an expression for (U3)wx,uv as a function of entries of A and
the parameters of G. Here, we present a more refined case analysis and find
(U3)wx,uv as a function of the parameters of G. Further, we show that, for
each entry ρ in the case analysis to find the value of (U3)wx,uv given arcs uv
and wx, there is a pair of arcs uv and wx such that (U3)wx,uv = ρ.

Using these observations, we will then consider writing U3 as a sum of 01-
matrices, where U is the transition matrix of a quantum walk on a strongly
regular graph, in Section 3.3. This is motivated by the fact that S+(U3) will
be the sum of a subset of those 01-matrices. If G and H are coparametric
strongly regular graphs, we will show that the coefficients of 01-matrices
in the decompositions of the cubes of the transition matrices for G and H
are the same. In order to do this, we will show that the possible values of
(U3)wx, uv and for which graphs these possible values occur depend only on
the parameters of the strongly regular graph.
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GRAPHS

3.1 Possible Entries of U 3

For a graph G and arcs wx and uv in the digraph of G, the wx, uv entry of
U(G)3 is the amplitude with which a walk moves from uv to wx after three
steps. If G is a strongly regular graph and uv and wx are given, then it is
possible to calculate the value of (U(G)3)wx, uv from the parameters of G. In
order to show this, we will look first at all possible walks between two arcs
after three steps and then analyze which of these walks exist for arcs uv and
wx.

A walk starting from a given arc and progressing three steps is exactly a
walk of length 4. It is not difficult to enumerate all such walks and they are
given in Table 3.1.

By analyzing the walks of length 4 that can occur between uv and wx,
we can show the following technical lemma:

3.1.1 Lemma. If G is a strongly regular graph and uv and wx are arcs in the
digraph of G, then the value of (U(G)3)wx, uv depends only on the parameters
of G.

Proof. Given uv and wx, there are three cases with regard to the number of
distinct elements of {u, v, w, x}. For each of the three cases, we will look at
the possible induced subgraph formed by {u, v, w, x} and count the walks of
length 4 that occur. Let G have parameter set (n, k, a, c). The main cases
are Case I, II and III where {u, v, w, x} have four, three and two distinct ele-
ments, respectively. The sub-cases are enumerated with small roman ordinals
and further enumerated with lower case letter, if necessary, to indicate a re-
finement by which of {u, v, w, x} are equal and by adjacency of the elements
of {u, v, w, x}, respectively.

Case I: {u, v, w, x} has 4 distinct vertices.
In this case, there are a few possibilities for the subgraph induced by

{u, v, w, x} in G. We will say that Wi as defined in Table 3.1 is a 4-walk
from uv to wx if Wi is isomorphic to a subgraph of G and the isomorphism
fixes u, v, w, and x. There may be more than one subgraph of G isomorphic
to some Wi; we will call the number of such subgraphs the multiplicity.

We present a summary of the 4-walks from uv to wx where {u, v, w, x}
are distinct and their multiplicities in Table 3.2, followed by detailed case
analysis in each of the cases.

Case I.a: u is adjacent to w and v is adjacent to w and x. See Figure 3.1.
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W1
u v w x

W2
v u w x

W3
u v x w

W4
u v=w x

W5
u

v=w

x

W6
u

v=w

x

W7

u=w v x

W8

u=w v x

W9
u v=x w

W10

u

v=x

w

W11
v u=x w

W12
v u=x w

W13

v=w u=x

W14

u=x
v=w

W15

u=w v=x

Table 3.1: All directed walks of length 4 with uv as the first edge and wx as the
last edge.
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Case Induced subgraph 4-walks from Multiplicity
of {u, v, w, x} in G uv to wx of 4-walk

I.a. W1 max{0, a− 2}
W2 1

u v

w x
or

u v

w x W3 1

I.b. W1 max{0, a− 1}u v

w x
or

u v

w x
W2 1

I.c. W1 max{0, a− 1}u v

w x
or

u v

w x
W3 1

I.d. W1 max{0, c− 2}
W2 1

u v

w x
or

u v

w x W3 1

I.e.

u v

w x
or

u v

w x
W1 a

I.f. W1 max{0, c− 1}u v

w x
or

u v

w x
W2 1

I.g. W1 max{0, c− 1}u v

w x
or

u v

w x
W3 1

I.h.

u v

w x
or

u v

w x
W1 c

Table 3.2: Walks of length 4 from uv to wx where {u, v, w, x} has 4 distinct
elements.
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u v

w x
or

u v

w x

Figure 3.1: Induced subgraph of {u, v, w, x} in G in Case I.a.

The directed walk defined by

{u, uv, v, vy, y, yw,w,wx, x}

for each y a common neighbour of v and w in G, is isomorphic to W1. Since
G is strongly regular, v and w are adjacent and hence have a − 2 common
neighbours other than u and x. Then G has max{0, a − 2} distinct walks
from uv to wx that are isomorphic to W1. In addition

{u, uv, v, vu, u, uw,w,wx, x}

is a length 4 directed walk isomorphic to W2 and

{u, uv, v, vx, x, xw,w,wx, x}

is a length 4 directed walk isomorphic to W3. The only 4-walks from uv to
wx are W1, W2, and W3.

Since each step of W1 visits a new vertex, each walk isomorphic to W1

contributes
(
2
k

)3
to (U3)wx, uv. Both W2 and W3 have exactly one step that

goes back along an arc to a vertex visited in the previous step, so each walk

contributes
(
2
k

)2 ( 2
k
− 1
)

to (U3)wx, uv. Then,

(U3)wx, uv = max{0, a− 2}
(

2

k

)3

+

(
2

k

)2(
2

k
− 1

)
+

(
2

k

)2(
2

k
− 1

)
= max{0, a− 2} 8

k3
+

8

k2

(
2− k
k

)
=

8 max{0, a− 2}+ 16− 8k

k3
.

Case I.b: u is adjacent to w and v is adjacent to w and not x. See Figure
3.2.
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u v

w x
or

u v

w x

Figure 3.2: Induced subgraph of {u, v, w, x} in G in Case I.b.

The directed walk defined by

{u, uv, v, vy, y, yw,w,wx, x}

for each y a common neighbour of v and w in G, is isomorphic to W1. Since
G is strongly regular, v and w are adjacent and hence have a − 1 common
neighbours other than u. Then G has max{0, a− 1} distinct walks from uv
to wx that are isomorphic to W1. In addition

{u, uv, v, vu, u, uw,w,wx, x}

is a length 4 directed walk isomorphic to W2. The only 4-walks from uv to
wx are W1 and W2.

As in the previous case, each walk isomorphic to W1 contributes
(
2
k

)3
to (U3)wx, uv and the walk isomorphic to W2 contributes

(
2
k

)2 ( 2
k
− 1
)

to
(U3)wx, uv. Then,

(U3)wx, uv = max{0, a− 1}
(

2

k

)3

+

(
2

k

)2(
2

k
− 1

)
= max{0, a− 1} 8

k3
+

4

k2

(
2− k
k

)
=

8 max{0, a− 1}+ 8− 4k

k3
.

Case I.c: u is not adjacent to w and v is adjacent to w and x. See Figure
3.3.

u v

w x
or

u v

w x

Figure 3.3: Induced subgraph of {u, v, w, x} in G in Case I.c.
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The directed walk defined by

{u, uv, v, vy, y, yw,w,wx, x}

for each y a common neighbour of v and w in G, is isomorphic to W1. Since
G is strongly regular, v and w are adjacent and hence have a − 1 common
neighbours other than x. Then G has max{0, a− 1} distinct walks from uv
to wx that are isomorphic to W1. In addition

{u, uv, v, vx, x, xw,w,wx, x}

is a length 4 directed walk isomorphic to W3. The only 4-walks from uv to
wx are W1 and W3.

As in the previous cases, each walk isomorphic to W1 contributes
(
2
k

)3
to (U3)wx, uv and the walk isomorphic to W3 contributes

(
2
k

)2 ( 2
k
− 1
)

to
(U3)wx, uv. Then,

(U3)wx, uv = max{0, a− 1}
(

2

k

)3

+

(
2

k

)2(
2

k
− 1

)
= max{0, a− 1} 8

k3
+

4

k2

(
2− k
k

)
=

8 max{0, a− 1}+ 8− 4k

k3
.

Case I.d: u is adjacent to w and v is adjacent to x and not w. See Figure
3.4.

u v

w x
or

u v

w x

Figure 3.4: Induced subgraph of {u, v, w, x} in G in Case I.d.

The directed walk defined by

{u, uv, v, vy, y, yw,w,wx, x}

for each y a common neighbour of v and w in G, is isomorphic to W1. Since
G is strongly regular, v and w are not adjacent and hence have c−2 common
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neighbours other than u and x. Then G has max{0, c − 2} distinct walks
from uv to wx that are isomorphic to W1. In addition

{u, uv, v, vu, u, uw,w,wx, x}

is a length 4 directed walk isomorphic to W2 and

{u, uv, v, vx, x, xw,w,wx, x}

is a length 4 directed walk isomorphic to W3. The only 4-walks from uv to
wx are W1, W2, and W3.

As in the previous cases, each walk isomorphic to W1 contributes
(
2
k

)3
to

(U3)wx, uv and the walks isomorphic to W2 or W3 contribute
(
2
k

)2 ( 2
k
− 1
)

to
(U3)wx, uv. Then,

(U3)wx, uv = max{0, c− 2}
(

2

k

)3

+

(
2

k

)2(
2

k
− 1

)
+

(
2

k

)2(
2

k
− 1

)
= max{0, c− 2} 8

k3
+

8

k2

(
2− k
k

)
=

8 max{0, c− 2}+ 16− 8k

k3
.

Case I.e: u is not adjacent to w and v is adjacent to w and not x. See Figure
3.5.

u v

w x
or

u v

w x

Figure 3.5: Induced subgraph of {u, v, w, x} in G in Case I.e.

The directed walk defined by

{u, uv, v, vy, y, yw,w,wx, x}

for each y a common neighbour of v and w in G, is isomorphic to W1. Since
G is strongly regular, v and w are adjacent and hence have a common neigh-
bours. Then G has a distinct walks from uv to wx that are isomorphic to
W1. There are no other 4-walks from uv to wx.
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As in the previous cases, each walk isomorphic to W1 contributes
(
2
k

)3
to

(U3)wx, uv. Then,

(U3)wx, uv = a

(
2

k

)3

=
8a

k3
.

Case I.f: u is adjacent to w and v is not adjacent to both w and x. See
Figure 3.6.

u v

w x
or

u v

w x

Figure 3.6: Induced subgraph of {u, v, w, x} in G in Case I.f.

The directed walk defined by

{u, uv, v, vy, y, yw,w,wx, x}

for each y a common neighbour of v and w in G, is isomorphic to W1. Since
G is strongly regular, v and w are not adjacent and hence have c−1 common
neighbours other than u. Then G has max{0, c− 1} distinct walks from uv
to wx that are isomorphic to W1. In addition

{u, uv, v, vu, u, uw,w,wx, x}

is a length 4 directed walk isomorphic to W2. The only 4-walks from uv to
wx are W1 and W2.

As in the previous cases, each walk isomorphic to W1 contributes
(
2
k

)3
to (U3)wx, uv and the walk isomorphic to W2 contributes

(
2
k

)2 ( 2
k
− 1
)

to
(U3)wx, uv. Then,

(U3)wx, uv = max{0, c− 1}
(

2

k

)3

+

(
2

k

)2(
2

k
− 1

)
=

8 max{0, c− 1}+ 8− 4k

k3
.
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Case I.g: u is not adjacent to w and v is adjacent to x and not w. See Figure
3.3.

u v

w x
or

u v

w x

Figure 3.7: Induced subgraph of {u, v, w, x} in G in Case I.g.

The directed walk defined by

{u, uv, v, vy, y, yw,w,wx, x}

for each y a common neighbour of v and w in G, is isomorphic to W1. Since
G is strongly regular, v and w are not adjacent and hence have c−1 common
neighbours other than x. Then G has max{0, c− 1} distinct walks from uv
to wx that are isomorphic to W1. In addition

{u, uv, v, vx, x, xw,w,wx, x}

is a length 4 directed walk isomorphic to W3. The only 4-walks from uv to
wx are W1 and W3.

As in the previous cases, each walk isomorphic to W1 contributes
(
2
k

)3
to (U3)wx, uv and the walk isomorphic to W3 contributes

(
2
k

)2 ( 2
k
− 1
)

to
(U3)wx, uv. Then,

(U3)wx, uv = max{0, c− 1}
(

2

k

)3

+

(
2

k

)2(
2

k
− 1

)
=

8 max{0, c− 1}+ 8− 4k

k3
.

Case I.h: u is not adjacent to w and v is not adjacent to both w and x. See
Figure 3.8.

u v

w x
or

u v

w x

Figure 3.8: Induced subgraph of {u, v, w, x} in G in Case I.h.
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The directed walk defined by

{u, uv, v, vy, y, yw,w,wx, x}

for each y a common neighbour of v and w in G, is isomorphic to W1. Since
G is strongly regular, v and w are adjacent and hence have c common neigh-
bours. Then G has c distinct walks from uv to wx that are isomorphic to
W1. There are no other 4-walks from uv to wx.

As in the previous cases, each walk isomorphic to W1 contributes
(
2
k

)3
to

(U3)wx, uv. Then,

(U3)wx, uv = c

(
2

k

)3

=
8c

k3
.

Case II: {u, v, w, x} has 3 distinct vertices.
In this case, we can have either v = w, u = w, v = x or u = x, since

uv and wx are edges and G is simple. In each case, the adjacency relation
of the vertices in the symmetric difference of {u, v} and {w, x} (denoted
{u, v} ⊕ {w, x} ) determines the induced subgraph of {u, v, w, x}.

Table 3.3 summarizes these cases and is followed by a detailed analysis
of each case.

Case II.i: v = w. See Figure 3.9.

u
v = w

x or u
v = w

x

Figure 3.9: Induced subgraph of {u, v, w, x} in G in Case II.i.

The directed walk defined by

{u, uv, v, vy, y, yv, v, vx = wx, x}

for each y a neighbour of v, different from u and x in G, is a isomorphic to
W4. Since G is strongly regular, v has max 0, k − 2 neighbours other than
u and x. Then G has max{0, k − 2} distinct walks from uv to wx that are
isomorphic to W4. In addition

{u, uv, v, vx, x, xv, v, vx, x}
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Case Adjacency Relations of 4-walks from Multiplicity
{u, v}and{w, x} in G uv to wx of 4-walk

II.i. v = w u ∼ x or u � x W4 max{0, k − 2}
W5 1
W6 1

II.ii.a u = w v ∼ x W8 max{0, a− 1}
W7 1

II.ii.b u = w v � x W8 a
II.iii.a v = x u ∼ w W9 max{0, a− 1}

W10 1
II.iii.b v = x u � w W9 a
II.iv.a u = x v ∼ w W11 max{0, a− 1}

W12 1
II.iv.b u = x v � w W11 max{0, c− 1}

W12 1

Table 3.3: Walks of length 4 from uv to wx where {u, v, w, x} has 3 distinct
elements.

is a length 4 directed walk isomorphic to W5 and

{u, uv, v, vu, u, uv, v, vx, x}

is a length 4 directed walk isomorphic to W6. The only 4-walks from uv to
wx are W4, W5, and W6.

Since W4 visits an arc and then the reverse arc in consecutive sequence ex-

actly once, each walk isomorphic to W4 contributes
(
2
k

)2 ( 2
k
− 1
)

to (U3)wx, uv.
Each of W5 and W6 visits an arc and then the reverse arc in consecutive
sequence exactly twice, so they each contribute

(
2
k

) (
2
k
− 1
)2

to (U3)wx, uv.
Then,

(U3)wx, uv = max{0, k − 2}
(

2

k

)2(
2

k
− 1

)
+

(
2

k

)(
2

k
− 1

)2

+

(
2

k

)(
2

k
− 1

)2

=

(
2

k

)(
2

k
− 1

)(
2 max{0, k − 2}

k
+ 2

(
2− k
k

))
.

Then, (U3)wx, uv = 0 if k ≥ 2. Since G is strongly regular, k 6= 0. If k = 1
then G is a direct sum of copies of K2, and (U3)wx, uv = 4.
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Case II.ii.a: u = w and v is adjacent to x. See Figure 3.10.

v
u = w

x

Figure 3.10: Induced subgraph of {u, v, w, x} in G in Case II.ii.a.

The directed walk defined by

{u, uv, v, vy, y, yu, u, ux, x}

for each y a common neighbour of u and v, different from x in G, is isomor-
phic to W8. Since G is strongly regular, u and v have max{0, a − 1} such
neighbours. Then G has max{0, a − 1} distinct walks from uv to wx that
are isomorphic to W8. In addition

{u, uv, v, vx, x, xu, u, ux, x}

is a length 4 directed walk isomorphic to W7. The only 4-walks from uv to
wx are W8, and W7.

Since W8 visits a new edge at every step, each walk isomorphic to W8

contributes
(
2
k

)3
to (U3)wx, uv. Walk W7 visits an arc and then the reverse

arc in consecutive sequence exactly once and so contributes
(
2
k

)2 ( 2
k
− 1
)

to
(U3)wx, uv Then,

(U3)wx, uv = max{0, a− 1}
(

2

k

)3

+

(
2

k

)2(
2

k
− 1

)
=

8 max{0, a− 1}+ 8− 4k

k3
.

Case II.ii.b: u = w and v is not adjacent to x. See Figure 3.11.

v
u = w

x

Figure 3.11: Induced subgraph of {u, v, w, x} in G in Case II.ii.b.
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The directed walk defined by

{u, uv, v, vy, y, yu, u, ux, x}

for each y a common neighbour of u and v, is isomorphic to W8. Since G
is strongly regular, u and v have a such neighbours. Then G has a distinct
walks from uv to wx that are isomorphic to W8, which is the only type of
4-walk from uv to wx. Then,

(U3)wx, uv = a

(
2

k

)3

=
8a

k3
.

Case II.iii.a: v = x and u is adjacent to w. See Figure 3.12.

u
v = x

w

Figure 3.12: Induced subgraph of {u, v, w, x} in G in Case II.iii.a.

The directed walk defined by

{u, uv, v, vy, y, yw,w,wv, v}

for each y a common neighbour of w and v, different from u in G, is isomor-
phic to W9. Since G is strongly regular, w and v have max{0, a − 1} such
neighbours. Then G has max{0, a − 1} distinct walks from uv to wx that
are isomorphic to W9. In addition

{u, uv, v, vu, u, uw,w,wv, v}

is a length 4 directed walk isomorphic to W10. The only types of 4-walk from
uv to wx are W9, and W10.

Since W9 visits a new edge at every step, each walk isomorphic to W9

contributes
(
2
k

)3
to (U3)wx, uv. Walk W10 visits uv and vu in consecutive

sequence and so contributes
(
2
k

)2 ( 2
k
− 1
)

to (U3)wx, uv Then,

(U3)wx, uv = max{0, a− 1}
(

2

k

)3

+

(
2

k

)2(
2

k
− 1

)
=

8 max{0, a− 1}+ 8− 4k

k3
.

40



3.1. POSSIBLE ENTRIES OF U3

Case II.iii.b: v = x and u is not adjacent to w. See Figure 3.13.

u
v = x

w

Figure 3.13: Induced subgraph of {u, v, w, x} in G in Case II.iii.b.

The directed walk defined by

{u, uv, v, vy, y, yw,w,wv, v}

for each y a common neighbour of w and v is isomorphic to W9. Since G is
strongly regular, w and v have a such neighbours and hence G has a distinct
walks from uv to wx that are isomorphic to W9, which is the only type of
4-walk from uv to wx. Then,

(U3)wx, uv = a

(
2

k

)3

=
8a

k3
.

Case II.iv.a: u = x and v is adjacent to w. See Figure 3.14.

v
u = x

w

Figure 3.14: Induced subgraph of {u, v, w, x} in G in Case II.iv.a.

The directed walk defined by

{u, uv, v, vy, y, yw,w,wu, u}

for each y a common neighbour of w and v, different from u in G, is isomor-
phic to W11. Since G is strongly regular, w and v have max{0, a − 1} such
neighbours. Then G has max{0, a − 1} distinct walks from uv to wx that
are isomorphic to W11. In addition

{u, uv, v, vu, u, uw,w,wu, u}

41



3. ANALYSIS OF THE ENTRIES OF U3 FOR STRONGLY REGULAR
GRAPHS

is a length 4 directed walk isomorphic to W12. The only 4-walks from uv to
wx are W11, and W12.

Since W11 visits a new edge at every step, each walk isomorphic to W11

contributes
(
2
k

)3
to (U3)wx, uv. Walk W12 visits uv and vu and uw and wu in

consecutive sequence and so contributes
(
2
k

) (
2
k
− 1
)2

to (U3)wx, uv. Then,

(U3)wx, uv = max{0, a− 1}
(

2

k

)3

+

(
2

k

)(
2

k
− 1

)2

=
8 max{0, a− 1}+ (2− k)2

k3

=
8 max{0, a− 1}+ 8− 8k + 2k2

k3
.

Case II.iv.b: u = x and v is not adjacent to w. See Figure 3.15.

v
u = x

w

Figure 3.15: Induced subgraph of {u, v, w, x} in G in Case II.iv.b.

The directed walk defined by

{u, uv, v, vy, y, yw,w,wu, u}

for each y a common neighbour of w and v, different from u in G, is isomor-
phic to W11. Since G is strongly regular, w and v have max{0, c − 1} such
neighbours. Then G has max{0, c−1} distinct walks from uv to wx that are
isomorphic to W11. In addition

{u, uv, v, vu, u, uw,w,wu, u}

is a length 4 directed walk isomorphic to W12. The only 4-walks from uv to
wx are W11, and W12. Then, as in the previous case,

(U3)wx, uv = max{0, c− 1}
(

2

k

)3

+

(
2

k

)(
2

k
− 1

)2

=
8 max{0, c− 1}+ 8− 8k + 2k2

k3
.
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Case III: {u, v, w, x} has 2 distinct vertices.

In this case, either u = x and v = w or v = x and u = w. The 4-walks for
these cases are summarized in Table 3.4 and will be followed by a detailed
analysis of each case.

Case 4-walks from Multiplicity
uv to wx of 4-walk

III.i u = x, v = w W13 1
W14 k − 1

III.ii v = x, u = w W15 a

Table 3.4: Walks of length 4 from uv to wx where {u, v, w, x} has 2 distinct
elements.

Case III.i: u = x and v = w. See Figure 3.16.

u = x v = w

Figure 3.16: Arcs uv and wx in the digraph of G in Case III.i.

The directed walk

{u, uv, v, vy, y, yv, v, vu, u}

is a length 4 directed walk with uv as the first arc and wx as the last arc,
where y is a neighbour of v other than u, and is isomorphic to W14. In G,
the vertex v has k − 1 such neighbours, so there are k − 1 such walks. In
addition,

{u, uv, v, vu, u, uv, v, vu, u}

is a walk isomorphic to W13. The only 4-walks from uv to wx are W13, and
W14.

Since W14 visits vy and the yv, each walk isomorphic to W14 contributes(
2
k

)2 ( 2
k
− 1
)

to (U3)wx, uv. Walk W13 visits an arc followed by its reverse arc
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at every step and so contributes
(
2
k
− 1
)3

to (U3)wx, uv. Then

(U3)wx, uv = (k − 1)

(
2

k

)2(
2

k
− 1

)
+

(
2

k
− 1

)3

=

(
2

k
− 1

)(
(k − 1)

(
2

k

)2

+

(
2− k
k

)2
)

=

(
2

k
− 1

)(
4(k − 1) + 4− 4k + k2

k2

)
=

(
2− k
k

)
.

Case III.ii: v = x and u = w. See Figure 3.17.

u = w v = x

Figure 3.17: Arcs uv and wx in the digraph of G in Case III.ii.

The directed walk

{u, uv, v, vy, y, yu, u, uv, v}

is a length 4 directed walk with uv as the first arc and wx as the last arc,
where y is a common neighbour of u and v, and is isomorphic to W15. In G,
vertices u and v are adjacent and hence have a such neighbours, so there are
a such walks. The only 4-walks from uv to wx are of type W15.

Since W15 never visits an arc followed immediately by its reverse arc, each

walk isomorphic to W15 contributes
(
2
k

)3
to (U3)wx, uv. Then

(U3)wx, uv = a

(
2

k

)3

=
8a

k3
.

From the analysis of the 4-walks from uv to wx and their amplitudes, we
have calculated the entries of (U(G)3)wx,uv, which are collated in Table 3.5.

This concludes the proof.
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Case Entry of (U(G)3)wx,uv

I.a
8 max{0, a− 2}+ 16− 8k

k3

I.b
8 max{0, a− 1}+ 8− 4k

k3

I.c
8 max{0, a− 1}+ 8− 4k

k3

I.d
8 max{0, c− 2}+ 16− 8k

k3

I.e
8a

k3

I.f
8 max{0, c− 1}+ 8− 4k

k3

I.g
8 max{0, c− 1}+ 8− 4k

k3

I.h
8c

k3

II.i

{
4 if k = 1

0 otherwise

II.ii.a
8 max{0, a− 1}+ 8− 4k

k3

II.ii.b
8a

k3

II.iii.a
8 max{0, a− 1}+ 8− 4k

k3

II.iii.b
8a

k3

II.iv.a
8 max{0, a− 1}+ 8− 8k + 2k2

k3

II.iv.b
8 max{0, c− 1}+ 8− 8k + 2k2

k3

III.i
2− k

k

III.ii
8a

k3

Table 3.5: Entries of (U(G)3)wx,uv given uv and wx.
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3.2 When Do These Entries Occur?

Lemma 3.1.1 shows the entry of (U(G)3)wx, uv given a strongly regular graph
G and two arcs uv and wx. However, to know whether one of the values given
in Section 3.1 occurs in (U(G)3)wx, uv, it is also necessary to know when there
exist two arcs uv and wx for each of the cases of the previous section.

Recall that a strongly regular graph G is primitive if G is connected and
the complement of G is connected. Otherwise, G is said to be imprimitive.
The next lemma, found in [9, p.218] characterizes the only class of imprimi-
tive graphs.

3.2.1 Lemma. [9] Let G be a strongly regular graph with parameters

(n, k, a, c).

Then the following are equivalent:

i) G is not connected,

ii) c = 0,

iii) a = k − 1, and

iv) G is the disjoint union of complete graphs on k vertices.

We will proceed to show that, up to some restrictions, a strongly regular
graph must have certain induced subgraphs. It will be natural to sometimes
only focus on primitive strongly regular graphs and strongly regular graphs
where a, c ≥ 2. Many parameter classes with a, c < 2 have unique graphs.
For example, if a = 0 and c = 1, then the smallest known examples are the
pentagon with parameters (5, 2, 0, 1), the Petersen graph with parameters
(10, 3, 0, 1) and the Hoffman-Singleton graph with parameters (50, 7, 0, 1).
All three graphs are known to be the unique graphs with their parameter
sets. Under these restrictions, we will show that the requirement of every
case is satisfied by some pair of arcs of the digraph of G. Then, we will
show that the values that occur as entries of (U(G)3)wx, uv are completely
determined by the parameters of G.

For convenience, we will write a ∼ b to say that a is adjacent to b, where
a and b are vertices. We will also write a � b when a is not adjacent to b.

3.2.2 Lemma. If G is a strongly regular graph with a ≥ 2, then G contains
either H1 or H2 as an induced subgraph.
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H1 H2

Proof. Let x, y be adjacent vertices of G. Since a ≥ 2, we have that x and
y have at least two adjacent neighbours, say p and q. Let H be induced
subgraph of G on vertex set {x, y, p, q}. If p � q, then H is isomorphic to
H1. Otherwise, H is isomorphic to H2.

3.2.3 Lemma. If G is a primitive strongly regular graph with a ≥ 1, then
G contains either H3 or H4 as an induced subgraph.

H3 H4

Proof. Let x and y be adjacent vertices of G. Since a ≥ 1, there exists
z ∈ V (G) adjacent to both x and y. Consider the neighbourhoods of x, y and
z. Suppose there is a vertex p /∈ {x, y, z} that lies in the neighbourhoods of
two of {x, y, z}, but not all three. Then, the subgraph of G induced by vertex
set {x, y, z, p} is isomorphic to H3, or H4, when p is in the neighbourhood
of exactly one, or two, of {x, y, z}, respectively. Otherwise, x and y have
exactly k − 1 neighbours in common, so a = k − 1. Then G is imprimitive
by Lemma 3.2.1, a contradiction.

3.2.4 Lemma. If G is a primitive strongly regular graph with c ≥ 2, then
G contains either H5 or H6 as an induced subgraph.

H5 H6

Proof. Since G is primitive, there exists two vertices of G, say x and y,
such that x � y. Since c ≥ 2, we have that x and y have at least two
common neighbours, say p and q. Let H be induced subgraph of G on vertex
set {x, y, p, q}. If p � q, then H is isomorphic to H5. Otherwise, H is
isomorphic to H6.
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3.2.5 Lemma. If G is a primitive strongly regular graph, then G contains
either H7 or H8 as an induced subgraph.

H7 H8

Proof. Since G is primitive, c > 0. Let x and y be nonadjacent vertices of
G and z be a common neighbour of x and y. If c = k, then the complement
of G, an (n, n− k − 1, n− 2− 2k + c, n− 2k + 1) strongly regular graph, is
imprimitive by Lemma 3.2.1 and as is G, a contradiction. Then c < k, so
x has a neighbour that is not a neighbour of y, say w. Let H be induced
subgraph of G on vertex set {x, y, z, w}. If z � w, then H is isomorphic to
H7. Otherwise, H is isomorphic to H8.

3.2.6 Lemma. If G is a primitive strongly regular graph, then G contains
either H9 or H7 as an induced subgraph.

H9 H7

Proof. As in the proof of Lemma 3.2.5, let x and y be nonadjacent vertices
of G, let w a neighbour of x that is not adjacent to y and z be a neighbour
of y that is not adjacent to x. Let H be induced subgraph of G on vertex
set {x, y, z, w}. If z � w, then H is isomorphic to H9. Otherwise, H is
isomorphic to H7.

We can now conclude with the following theorem.

3.2.7 Theorem. If G is a primitive, (n, k, a, c), strongly regular graph with
a ≥ 2 and c ≥ 2, then the distinct entries of U(G)3 are determined by the
parameters of G.

Proof. We showed in Lemma 3.1.1 that, given uv and wx, the entry

(U(G)3)wx,uv

depends only on the parameters of G. We will show that, if G is primitive
with a ≥ 2 and c ≥ 2, then the digraph G will always have some pair of arcs
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that fall into each of the cases in the proof of Lemma 3.1.1. Let D be the
digraph of G.

Lemma 3.2.2 shows that D always has some pair of arcs that fall into
Case I.a in the proof of Lemma 3.1.1. Lemma 3.2.3 shows that D always has
some pair of arcs that fall into Case I.b and Case I.c. Lemma 3.2.4 shows
that D always has some pair of arcs that fall into Case I.d and Case I.e.
Lemma 3.2.5 shows that D always has some pair of arcs that fall into Case
I.f and Case I.g. Lemma 3.2.6 shows that D always has some pair of arcs
that fall into Case I.h.

Since a > 0, any edge in G lies on a triangle. Since c > 0, any pair of
nonadjacent vertices in G lies on an induced path of length 2. Then, the
digraph of G has pairs of arcs that fall into all of the subcases of Case II.
Since G is nonempty, the digraph G will have pairs of arcs that fall into both
of the subcases of Case III.

3.3 Decompositions of U 3 into 0-1 Matrices

Armed with Theorem 3.2.7, we can now examine decompositions of U(G)3

into a summation of 01-matrices, for a strongly regular graph G. We can
write,

U(G)3 =
m∑
i=1

ciAi

where i is the number of distinct entries in U(G)3 and

(Ai)x,y =

{
1 if (U(G)3)x,y = ci

0 otherwise.

If the hypotheses of Theorem 3.2.7 are fulfilled, then we know that the entries
of U(G)3 depend on the parameters. We have shown the following corollary.

3.3.1 Corollary. Let G and H be two primitive strongly regular graphs with
the same parameters (n, k, a, c), such that a ≥ 2 and c ≥ 2. Then there exists
decompositions

U(G)3 =
m∑
i=1

ciAi
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and

U(H)3 =
∑̀
i=1

ciBi

into summations of 0-1 matrices, where

(Ai)p,q =

{
1 if (U(G)3)p,q = ci

0 otherwise

and

(Bi)p,q =

{
1 if (U(H)3)p,q = ci

0 otherwise.

In Chapter 5, the above corollary and observations of the regular graphs
not distinguished by the procedure will be used to give insight into how
counterexamples for Conjecture 2.3.2 might arise.

3.4 Remarks

Strongly regular graphs with parameters (n, k, a, c) such that c > 0 have
diameter 2. Thus, fixing a reference vertex v in a strongly regular graph G,
we can consider its set of neighbours, say B1(v), and the set of vertices at
distance two from v, which we will call B2(v). If we consider walks starting
at arc i and ending at arc j, where v is the tail of i, then the head of i is
in B1. We can then consider where the ends of j lie with respect to the
partition {{v}, B1, B2} of V (G). If the ends of j are in {v} ∪B1, then U3

i,j is
determined by the structure of the first neighbourhoods of vertices of G.

Since any two point graphs of generalized quadrangles of the same order
have isomorphic neighbours, with respect to some reference vertex, it is in-
teresting to consider such graphs. In particular, it is interesting to consider
the point graphs of T ∗2 (O) and T ∗2 (O′), where O and O′ are hyperovals such
that there is no isomorphism of the underlying space mapping O and O′,
as the graphs will have not only isomorphic first neighbourhoods B1(v), but
similar structures in B2(v) as well, for any choice of v in the vertex sets.
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Chapter 4

An Expression for S+(U3)

From Chapter 3, we can decompose U3 as a sum of matrices with the entries
of U3 as the coefficients;

U(G)3 =
m∑
i=1

ciAi

where {ci} is a multiset of entries in U(G)3 and each Ai is a matrix with
entries in {0, 1}. From this, we can write S+(U) as a sum of a subset of the
Ais. In particular, we would like to write S+(U3) as a sum of matrices which
are products of Dh, Dt and A, as this approach was successful in finding the
eigenvalues of S+(U2).

In this chapter, we will obtain an expression for S+(U) using the case
analysis in Section 3.1, by summing the matrices corresponding to the posi-
tive entries of U3.

4.1 Positive Entries of S+(U 3)

Since we have found the entries of U3 for a strongly regular graph G with
parameters (n, k, a, c), it is also possible to find the cases when the entries
of U3 are positive. Table 4.1 is an altered version of Table 3.5 with added
information about when each value is positive and excluding graphs where
k < 2.

In particular, we see that if a > 1, c > 1 and a, c ≤ k
2
, then only uv

and wx falling into cases I.e, I.h, II.ii.b, II.iii.b, II.iv.a., II.iv.b and III.ii will
give positive entries in U . The requirements on a, c and k are met by many
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Case Entry of (U(G)3)wx,uv (U(G)3)wx,uv > 0 if and only if:

I.a
8 max{0, a− 2}+ 16− 8k

k3
never; (U(G)3)wx,uv < 0 for all
strongly regular graphs

I.b
8 max{0, a− 1}+ 8− 4k

k3
a > 1 and 2a > k

I.c
8 max{0, a− 1}+ 8− 4k

k3
a > 1 and 2a > k

I.d
8 max{0, c− 2}+ 16− 8k

k3
never; (U(G)3)wx,uv < 0 for all
strongly regular graphs

I.e
8a

k3
a > 0

I.f
8 max{0, c− 1}+ 8− 4k

k3
c > 1 and 2c > k

I.g
8 max{0, c− 1}+ 8− 4k

k3
c > 1 and 2c > k

I.h
8c

k3
c > 0

II.i

{
4 if k = 1

0 otherwise
k = 1

II.ii.a
8 max{0, a− 1}+ 8− 4k

k3
a > 1 and 2a > k

II.ii.b
8a

k3
a > 0

II.iii.a
8 max{0, a− 1}+ 8− 4k

k3
a > 1 and 2a > k

II.iii.b
8a

k3
a > 0

II.iv.a
8 max{0, a− 1}+ 8− 8k + 2k2

k3
a > 1

II.iv.b
8 max{0, c− 1}+ 8− 8k + 2k2

k3
c > 1

III.i 2− k

k
never; (U(G)3)wx,uv < 0 for all
strongly regular graphs

III.ii
8a

k3
a > 0

Table 4.1: Entries of (U(G)3)wx,uv given uv and wx and positivity conditions.
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strongly regular graphs, in particular by the point graph of a generalized
quadrangle with order (s, t) if s > 2 and t > 1. We may then write an
algebraic expression for S+(U3) entry-wise, by finding an expression such
that

(S+(U3))wx,uv =


1 if uv and wx fall into one of cases:

I.e, I.h, II.ii.b, II.iii.b, II.iv.a., II.iv.b and III.ii

0 otherwise.

Let A be the adjacency matrix of G. Then, the wx, uv entry of S+(U(G)3)
is:

S+(U(G)3)wx,uv = ∆(1− Auw)(1− Avx)− (1− Avx)δuw + (1− Auw)δvx−
δvxδuw + δux(1− δvw)

where δ is the Kronecker delta and

∆ = (1− δuw)(1− δux)(1− δvw)(1− δvx).

This equation is, however, too complicated. Instead, we want to write S+(U3)
in terms of Dh and Dt as defined in Chapter 2 so as to express S+(U3) in
terms of the properties of G.

4.2 Incidence Matrices from Case Analysis

The cases as defined in Section 3.1 partition the pairs of arcs of G. Each case
defines a relation; we can write that uv ∼ I.a wx if (uv, wx) falls into case
I.a in the analysis, which is to say that {u, v, w, x} are all distinct and either
{u, v, w, x} are all mutually adjacent or {u, v, w, x} are all mutually adjacent,
except for u and x. We can write an incidence matrix for this relation; let
MI.a be the matrix such that

(MI.a)wx,uv =

{
1 if uv ∼ I.a wx

0 otherwise.

Since (uv, wx) falls into exactly one case, the incidence matrices of two differ-
ent cases do not have ones in the same positions and the sum of the incidence
matrices of all of the cases is the all ones matrix.
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Then, if a > 1, c > 1 and a, c ≤ k
2
, we have

S+(U3) = MI.e +MI.h +MII.ii.b +MII.iii.b +MII.iv.a +MII.iv.b +MIII.ii.

It remains to find each of the matrices Mx for each case. Let A and A be the
adjacency matrix of G and the complement of G respectively. Then

A = J − I − A

where J is the all-ones matrix and I is the identity. Recall the following
incidence matrices of D, the digraph of G, with rows indexed by the vertices
of D and columns indexed by the arcs of D:

(Dh)i,j =

{
1 if i is the head of arc j

0 otherwise

and

(Dt)i,j =

{
1 if i is the tail of arc j

0 otherwise.

If B and C are both m× n matrices, then the Schur product of B and C is
the entry-wise product of B and C, as follows:

(B ◦ C)p,q = Bp,qCp,q.

4.2.1 Lemma. If G is a strongly regular graph, then

MI.e = (DT
hADh) ◦ (DT

t ADt) ◦ (DT
t ADh) ◦ (J +DT

hDt).

Proof. In this case, uv ∼ I.e wx if {u, v, w, x} are all distinct, v is adjacent
to w and not x, u is not adjacent to w.

u v

w x
or

u v

w x

Figure 4.1: Possible subgraphs of G induced by {u, v, w, x} such that uv ∼ I.e

wx.

In other words, if i ∼ I.e j, then the head of i is adjacent with the tail of
j, the head of i is not adjacent with the head of j, the tail of i is not adjacent
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with the tail of j, the tail of i is either adjacent or not adjacent with the
head of j. Note that by specifying the adjacency relation between the heads
and tails of i and j, we have also determined that i and j do not have any
common endpoints. Observe that, letting N` be the `th column of matrix N ,
we obtain:

(DT
hADh)j,i = (Dh)

T
j A(Dh)i =

{
1 if head of j is adjacent to the head of i

0 otherwise.

Hence

MI.e = (DT
hADh) ◦ (DT

t ADt) ◦ (DT
t ADh) ◦ (DT

hADt +DT
hADt).

Each column of Dh and Dt has one position with an entry of 1 and all other
positions have entry 0. Then Dhj = j and Dtj = j, where j is the all ones
vector. Then, we can observe that DT

h JDt = J and obtain:

DT
hADt +DT

hADt = DT
h (A+ A)Dt.

= DT
h (J − I − A+ A)Dt

= DT
h JDt +DT

h IDt

= J +DT
hDt

and
MI.e = (DT

hADh) ◦ (DT
t ADt) ◦ (DT

t ADh) ◦ (J +DT
hDt).

4.2.2 Lemma. If G is a strongly regular graph, then

MI.h = (DT
hADh) ◦ (DT

t ADt) ◦ (DT
t ADh) ◦ (J +DT

hDt).

Proof. In this case, uv ∼ I.h wx if {u, v, w, x} are all distinct, v is not adjacent
to w nor x, u is not adjacent to w.

u v

w x
or

u v

w x

Figure 4.2: Possible subgraphs of G induced by {u, v, w, x} such that uv ∼ I.h

wx.
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In other words, if i ∼ I.h j, then the head of i is not adjacent with the tail
of j or with the head of j, the tail of i is not adjacent with the tail of j, the
tail of i is either adjacent or not adjacent with the head of j. Then, similar
to the previous case, we find

MI.h = (DT
hADh) ◦ (DT

t ADt) ◦ (DT
t ADh) ◦ (DT

hADt +DT
hADt)

= (DT
hADh) ◦ (DT

t ADt) ◦ (DT
t ADh) ◦ (J +DT

hDt)
.

4.2.3 Lemma. If G is a strongly regular graph, then

MII.ii.b = DT
t Dt − I −DT

t Dt ◦DT
hADh.

Proof. In this case, uv ∼ II.ii.b wx if {u, v, x} are all distinct and u = w and
v is not adjacent to x.

v
u = w

x

Figure 4.3: Subgraph of G induced by {u, v, w, x} such that uv ∼ II.ii.b wx.

In other words, if i ∼ II.ii.b j, then i and j share the same tail and the
heads of i and j are not adjacent. Then,

MII.ii.b = (DT
hADh) ◦ (DT

t Dt)

= (J −DT
hDh −DT

hADh) ◦ (DT
t Dt)

= DT
t Dt − I −DT

t Dt ◦DT
hADh

noting that DT
t Dt ◦DT

hDh = I since if two arcs share the same head and tail,
then the arcs are equal.

4.2.4 Lemma. If G is a strongly regular graph, then

MII.iii.b = DT
hDh − I −DT

hDh ◦DT
t ADt.

56



4.2. INCIDENCE MATRICES FROM CASE ANALYSIS

Proof. In this case, uv ∼ II.iii.b wx if {u, v, w} are all distinct and v = x and
u is not adjacent to w.

u
v = x

w

Figure 4.4: Subgraph of G induced by {u, v, w, x} such that uv ∼ II.iii.b wx.

In other words, if i ∼ II.iii.b j, then i and j share the same head and the
tails of i and j are not adjacent. Then,

MII.iii.b = (DT
hDh) ◦ (DT

t ADt)

= (DT
hDh) ◦ (J −DT

t Dt −DT
t ADt)

= DT
hDh − I −DT

hDh ◦DT
t ADt

.

4.2.5 Lemma. If G is a strongly regular graph, then

MII.iv.a = (DT
hDt) ◦ (DT

t ADh).

Proof. In this case, uv ∼ II.iv.a wx if {u, v, w} are all distinct and u = x and
v is adjacent to w.

v u = x w

Figure 4.5: Subgraph of G induced by {u, v, w, x} such that uv ∼ II.iv.a wx.

In other words, if i ∼ II.iv.a j, then the tail i is equal to the head of j and
the head of i is adjacent to the tail of j. Then,

MII.iv.a = (DT
hDt) ◦ (DT

t ADh).
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4.2.6 Lemma. If G is a strongly regular graph, then

MII.iv.b = (DT
hDt) ◦ (DT

t ADh).

Proof. In this case, uv ∼ II.iv.b wx if {u, v, w} are all distinct and u = x and
v is not adjacent to w.

v u = x w

Figure 4.6: Subgraph of G induced by {u, v, w, x} such that uv ∼ II.iv.b wx.

In other words, if i ∼ II.iv.b j, then the tail i is equal to the head of j and
the head of i is not adjacent to the tail of j. Then,

MII.iv.b = (DT
hDt) ◦ (DT

t ADh).

4.2.7 Lemma. If G is a strongly regular graph, then

MIII.ii = I

where I is the identity matrix on the number of arcs of G.

Proof. In this case, uv ∼ III.ii wx if u = w and v = x.

u=w v=x

Figure 4.7: Subgraph of G induced by {u, v, w, x} such that uv ∼ III.ii wx.

In other words, if i ∼ III.ii j, then the heads and tail of i and j both agree.
Then, MIII.ii = I.

We can now determine an expression for S+(U3).

4.2.8 Theorem. If G is a strongly regular graph with parameters (n, k, a, c)
such that a > 1, c > 1 and a, c,≤ k

2
, then

S+(U3) = J −DT
t ADt −DT

hADh + (DT
hADh) ◦ (DT

t ADt) +DT
hDt − P.

58
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Proof. From Lemmas 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.2.5, 4.2.6 and 4.2.7, we have

S+(U3) =MI.e +MI.h +MII.ii.b +MII.iii.b +MII.iv.a +MII.iv.b +MIII.ii

= (DT
hADh) ◦ (DT

t ADt) ◦ (DT
t ADh) ◦ (J +DT

hDt)

+ (DT
hADh) ◦ (DT

t ADt) ◦ (DT
t ADh) ◦ (J +DT

hDt)

+DT
t Dt − I −DT

t Dt ◦DT
hADh +DT

hDh − I −DT
hDh ◦DT

t ADt

+ (DT
hDt) ◦ (DT

t ADh) + (DT
hDt) ◦ (DT

t ADh) + I.

We need the following observations in order to simplify the expression. If
arcs i and j have non-adjacent heads and non-adjacent tails, then i and j do
not share head or tails. Then,

(DT
hADh) ◦ (DT

t ADt) ◦DT
t Dh = (DT

hADh) ◦ (DT
t ADt) ◦DT

hDt = 0

and
(DT

hADh) ◦ (DT
t ADt) ◦ P = 0

where P is the matrix of the permutation that takes each arc uv to its reverse
arc vu. Then, we can simplify MI.e +MI.h as follows:

MI.e +MI.h = (DT
hADh) ◦ (DT

t ADt) ◦ (DT
t ADh) ◦ (J +DT

hDt)

+ (DT
hADh) ◦ (DT

t ADt) ◦ (DT
t ADh) ◦ (J +DT

hDt)

= (DT
hADh) ◦ (DT

t ADt) ◦ (J +DT
hDt) ◦ (DT

t ADh +DT
t ADh)

= (DT
hADh) ◦ (DT

t ADt) ◦ (J +DT
hDt) ◦ (J +DT

t Dh)

= (DT
hADh)◦(DT

t ADt)◦(J+DT
hDt+D

T
t Dh+(DT

hDt)◦(DT
t Dh))

= (DT
hADh) ◦ (DT

t ADt) ◦ (J +DT
hDt +DT

t Dh + P )

= (DT
hADh) ◦ (DT

t ADt)

Since we want the expression to be a sum of products of Dh, Dt and A. We
substitute A = J − I − A in the expression for MI.e +MI.h to obtain:

MI.e +MI.h = (DT
hADh) ◦ (DT

t ADt)

= (DT
h (J − I − A)Dh) ◦ (DT

t (J − I − A)Dt)

= (J −DT
hDh −DT

hADh) ◦ (J −DT
t Dt −DT

t ADt)

= J + I −DT
t Dt −DT

hDh −DT
t ADt −DT

hADh

+ (DT
hDh) ◦ (DT

t ADt) + (DT
t Dt) ◦ (DT

hADh)

+ (DT
hADh) ◦ (DT

t ADt)
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We can also simply MII.iv.a +MII.iv.b as follows:

MII.iv.a +MII.iv.b = (DT
hDt) ◦ (DT

t ADh) + (DT
hDt) ◦ (DT

t ADh)

= (DT
hDt) ◦ (DT

t ADh +DT
t ADh)

= (DT
hDt) ◦ (DT

t (A+ A)Dh)

= (DT
hDt) ◦ (DT

t (J − I)Dh)

= (DT
hDt) ◦ (J −DT

t Dh)

= DT
hDt − P

From the above analysis, we obtain:

S+(U3) =MI.e +MI.h +MII.ii.b +MII.iii.b +MII.iv.a +MII.iv.b +MIII.ii

= J + I −DT
t Dt −DT

hDh −DT
t ADt −DT

hADh

+ (DT
hDh) ◦ (DT

t ADt) + (DT
t Dt) ◦ (DT

hADh)

+ (DT
hADh) ◦ (DT

t ADt) +DT
t Dt − I − (DT

t Dt) ◦ (DT
hADh)

+DT
hDh − I − (DT

hDh) ◦ (DT
t ADt) +DT

hDt − P + I

= J −DT
t ADt −DT

hADh + (DT
hADh) ◦ (DT

t ADt) +DT
hDt − P

It must be noted that by finding the adjacency matrices Mx for the other
cases, one can find the expression for S+(U3) for other values of a and c. We
will do one more case here.

4.2.9 Theorem. If G is a strongly regular graph with parameters (n, k, a, c)
such that a, c > k

2
, then

S+(U3) = J − (DT
hADh) ◦ (DT

t ADt) +DT
hDt − P.

Proof. Observe that if a > k
2

and c > k
2
, then (U3)wx,uv is positive for all

pairs (uv, wx) in all cases of the proof of Lemma 3.1.1, except Case I.a, Case
I.d, Case II.i, and Case III.i. We observe that, given two arcs i and j, if the
heads of i and j are adjacent and the tails of i and j are adjacent, the (i, j)
must fall into one of Cases I.a, I.d, II.i, II.iv.a, II.iv.b, and III.i. Then

(DT
hADh)◦(DT

t ADt) = MI.a+MI.d+MII.i+MII.iv.a+MII.iv.b+MIII.i. (4.2.1)
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4.2. INCIDENCE MATRICES FROM CASE ANALYSIS

We then obtain

S+(U3) = J −MI.a −MI.d −MII.i −MIII.i

= J − (MI.a +MI.d +MII.i +MII.iv.a +MII.iv.b +MIII.i)

+ (MII.iv.a +MII.iv.b)

Then, by Equation (4.2.1) and from our earlier simplification in the proof of
Theorem 4.2.8 that

MII.iv.a +MII.iv.b = DT
hDt − P,

we obtain:

S+(U3) = J − (DT
hADh) ◦ (DT

t ADt) +DT
hDt − P.
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Chapter 5

Graphs Undistinguished by the
Spectrum of S+(U3)

Emms, Severini, Wilson and Hancock only claim Conjecture 2.3.2 for strongly
regular graphs; the procedure does not distinguish non-isomorphic graphs in
general. In [5, 6], the authors give two regular graphs on 14 vertices that are
not isomorphic but have the same spectrum with respect to S+(U3). Gordon
Royle provides two regular graphs on 16 vertices that are not isomorphic but
have the same spectrum with respect to S+(U3). Further, the construction
of Cai, Fürer and Immerman in [3] also gives one pair of graphs which are
not distinguished by the quantum walk procedure.

Although none of these graphs are strongly regular, it is still useful to look
at these graphs to obtain intuition in constructing strongly regular graphs
that are undistinguished by the spectrum of S+(U3).

5.1 Regular Graphs with Cospectral Mates

Let G1 and G2 be defined as follows in Figure 5.1:
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Figure 5.1: 14-vertex graphs G1 and G2

Both of G1 and G2 are regular graphs on 14 vertices with valency 4 and
are found in [5, 6]. Observe that G2 is obtained from G1 by replacing the
edges {0, 1} and {2, 3} with edges {0, 2} and {1, 3}. It can be verified that
G1 is not isomorphic to G2 but S+(U(G1)

3) and S+(U(G2)
3) have the same

spectrum.
Let G3 and G4 be defined as follows, in Figure 5.2:
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Figure 5.2: 16-vertex graphs G3 and G4

Both of G3 and G4 are regular graphs on 16 vertices with valency 3 and
are found by Royle. Observe that G4 is obtained from G3 by changing the
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5.2. CAI-FÜRER-IMMERMAN GRAPHS

neighbours of vertices 0 and 1 in {2, 3, 4, 5} to non-neighbours and non-
neighbours to neighbours. It can be verified that G3 is not isomorphic to G4

but S+(U(G3)
3) and S+(U(G4)

3) have the same spectrum.

5.2 Cai-Fürer-Immerman Graphs

In [3], the authors constructed graphs X(G) from a given graph G, usually
a low degree graph with linear size separators, and a switching operation as
counterexamples for the symmetric power of a graph being a polynomial time
graph invariant. We will refer to the graph X(G) as defined in this section
as the Cai-Fürer-Immerman graph of G.

For each positive integer d, we define a graph Xd as follows: Xd has vertex
set Vd and edge set Ed. The vertex set consists of 3 disjoint sets, Ad, Bd and
Md such that Ad and Bd each contain d elements, indexed by {1, . . . , d} and
Md contains one element indexed by each even subset of {1, . . . , d}. Vertices
ai ∈ Ad and mS ∈Md are adjacent if i ∈ S and vertices bj ∈ Bd and mS ∈Md

are adjacent if j /∈ S.

To obtain the Cai-Fürer-Immerman graph of G, we replace each vertex
v of G with a graph X(v) where X(v) = Xd and d is the valency of v. In
X(v) we associate one pair of vertices {ai, bi} with each neighbour w of v
and write a(v, w) = ai and b(v, w) = bi. For each edge v, w in G, we add the
edges {a(v, w), a(w, v)} and {b(v, w), b(w, v)}.

A twist of X(G) is obtained by choosing an edge of G and replacing the
edges {a(v, w), a(w, v)} and {b(v, w), b(w, v)} in X(G) with {a(v, w), b(w, v)}
and {b(v, w), a(w, v)}.

If we take the complete graph on 4 vertices, then X(K4) has 40 vertices

and is regular with valency 4, see Figure 5.3. Let X̃(K4) be the twist of

X(K4). It can be verified that X(K4) and X̃(K4) are not isomorphic but

S+
(
U (X(K4))

3) and S+

(
U
(
X̃(K4)

)3)
have the same spectrum.

5.3 Observations

For all three pairs of graphs,

P1 = {G1, G2}, P2 = {G3, G4}

65
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m∅

a2b1 b2a1

b3a3

m{1,3}m{1,2}
m{2,3}

X3

Figure 5.3: Cai-Fürer-Immerman graph of K4, denoted X(K4)
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and
P3 = {X(K4), X̃(K4)},

we have some algebraic observations common to all three pairs.
For Pi, with i = 1, 2, 3, we notice that U(Γ1)

3 and U(Γ2)
3 for Γ1,Γ2 ∈ Pi

have the same set of distinct entries. Thus, if {cj}mj=1 is the set of distinct en-
tries of U(Γ1)

3, we can decompose U(Γ1)
3 and U(Γ2)

3 into a sum of matrices
with entries in {0, 1}, as follows:

U(Γ1)
3 =

m∑
j=1

ciAi

and

U(Γ2)
3 =

m∑
j=1

ciBi,

where
Then Aj and Bj are cospectral for each j = 1, . . . ,m.
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Chapter 6

Conclusion

We proceed to summarize our results and propose questions for future re-
search.

6.1 Summary of Results

We are mainly concerned with Conjecture 2.3.2 of Emms, Hancock, Severini
and Wilson in [5, 6], which we will restate here.

Conjecture. [5, 6] If G and H are strongly regular graphs, then S+(U(G)3)
and S+(U(H)3) are cospectral if and only if G and H are isomorphic.

Although we are unable to either prove or disprove the conjecture, we
were able to prove a number of interesting properties.

• We resolved one direction of the conjecture in Theorem 2.3.1, showing
that S+(U(G)3) and S+(U(H)3) are cospectral if G and H are isomor-
phic.

• Using the methods of [8], we find a complete proof that the eigenvalues
of S+(U) are determined by the eigenvalues of the adjacency matrix,
for any regular graph of valency k where k ≥ 2.

• We show that S+(U2) = S+(U)2 + I for any regular graph of valency
k where k ≥ 2.

• We show that a primitive strongly regular graph G with parameters
(n, k, a, c), if a ≥ 2 and c ≥ 2, then the entries U(G)3 are determined
by (n, k, a, c).
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6. CONCLUSION

• We show that for a strongly regular graphG with parameters (n, k, a, c),
if a ≥ 1 and c ≥ 1, a ≤ k

2
and c ≤ k

2
, then

S+(U3) = J −DT
t ADt −DT

hADh + (DT
hADh) ◦ (DT

t ADt) +DT
hDt − P

and, if a > k
2

and c > k
2
, then

S+(U3) = J − (DT
hADh) ◦ (DT

t ADt) +DT
hDt − P.

6.2 Future Work

It is still an open problem to prove or disprove the remaining direction of
Conjecture 2.3.2.

We have obtained some intuition in trying to construct counterexamples
for the conjecture. In Chapter 5, we observed that for a pair P = (Γ1,Γ2)
of the known pairs of regular graphs not distinguished by the quantum walk
procedure of [5, 6], that U(Γ1)

3 and U(Γ2)
3 have the same set of distinct

entries and, even stronger, if {cj}mj=1 is the set of distinct entries of U(Γ1)
3,

we can decompose U(Γ1)
3 and U(Γ2)

3 into a sum of matrices with entries in
{0, 1}, as follows:

U(Γ1)
3 =

m∑
j=1

ciAi

and

U(Γ2)
3 =

m∑
j=1

ciBi,

where

(Ai)p,q =

{
1 if (U(Γ1)

3)p,q = ci

0 otherwise

and

(Bi)p,q =

{
1 if (U(Γ2)

3)p,q = ci

0 otherwise.

Then Aj and Bj are cospectral for j = 1, . . . ,m. By Chapter 3, we know
that such a decomposition is also possible for any pair of strongly regular
graphs with the same parameters. That is, given G and H coparametric
strongly regular graphs and let {cj}`j=1 be the set of distinct entries of U(G)3,
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6.2. FUTURE WORK

then a similar decomposition is possible. We then hope to find strongly
regular graphs such that the corresponding matrices in the decomposition
are cospectral, as in the case of the regular graphs undistinguished by the
procedure.

71





Bibliography

[1] Alessandro Bichara, Francesco Mazzocca, and Clelia Somma. On
the classification of generalized quadrangles in a finite affine space
AG(3, 2h). Boll. Un. Mat. Ital. B (5), 17(1):298–307, 1980.

[2] A. Brouwer. Parameters of strongly regular graphs. http://www.win.

tue.nl/~aeb/graphs/srg/srgtab.htmlp.

[3] J.-Y. Cai, M. Furer, and N. Immerman. An optimal lower bound on the
number of variables for graph identification. In SFCS ’89: Proceedings
of the 30th Annual Symposium on Foundations of Computer Science,
pages 612–617, Washington, DC, USA, 1989. IEEE Computer Society.

[4] Brendan L Douglas and Jingbo B Wang. A classical approach to the
graph isomorphism problem using quantum walks. Journal of Physics
A: Mathematical and Theoretical, 41(7):075303, 2008.

[5] David Emms, Edwin R. Hancock, Simone Severini, and Richard C. Wil-
son. A matrix representation of graphs and its spectrum as a graph
invariant. Electr. J. Comb., 13(1), 2006.

[6] David Emms, Simone Severini, Richard C. Wilson, and Edwin R. Han-
cock. Coined quantum walks lift the cospectrality of graphs and trees.
Pattern Recognition, 42(9):1988–2002, 2009.

[7] John King Gamble, Mark Friesen, Dong Zhou, Robert Joynt, and S. N.
Coppersmith. Two-particle quantum walks applied to the graph isomor-
phism problem. Phys. Rev. A, 81(5):052313, May 2010.

[8] C. Godsil and K. Guo. Quantum walks and line digraphs. in preparation,
2010.

73



BIBLIOGRAPHY

[9] C. Godsil and G. Royle. Algebraic Graph Theory. Springer-Verlag, New
York, 2001.

[10] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles. Pitman
Publishing, London, 1984.

[11] Wojciech Peisert. All self-complementary symmetric graphs. J. Algebra,
240(1):209–229, 2001.
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