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Abstract

This project studies a regularity condition on graphs. A graph X is said
to be triply regular if for x, y, z ∈ V (X)

|{v ∈ V (X) : d(v, x) = i, d(v, y) = j and d(v, z) = k}|

is a constant depending only on i, j, k ∈ Z and the pairwise distances of
{x, y, z}. We find a necessary condition for triply regular on strongly regular
graphs; if a strongly regular graph meets the Krein bound, then it is triply
regular.
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Chapter 1

Introduction

A graph on n vertices that is neither complete nor empty is strongly regular
if each vertex has degree k, each pair of adjacent vertices has a common
neighbours and each pair of non-adjacent vertices has c common neighbours.
Let X be such a graph and consider a vertex x in X. Let

X1(x) = {y ∈ V (X) : y ∼ x}

and

X2(x) = {y ∈ V (X) : y � x}.

Since x has degree k, there are k vertices in X1(x). Each vertex in X1(x) is
joined to a vertices in X1(x) and k − a − 1 in X2(x). There are n − k − 1
vertices in X2(x). Each vertex in X2(x) is joined to c vertices in X1(x) and
so has k − c neighbours in X2(x). See Figure 1. From a degree-counting
argument, we obtain a fundamental equality satisfied by (n, k, a, c);

k(k − a− 1) = c(n− k − 1).

We also obtain that the subgraphs of X induced by X1(x) and X2(x) are
both regular with valencies a and k − c, respectively.
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1. INTRODUCTION
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Figure 1.1: Neighbourhoods of a strongly regular graph with parameters
(n, k, a, c).

It is natural to ask is when the graphs induced by X1(x) and X2(x) are
strongly regular.

We come across the problem of strongly regular subconstituents while
studying graphs with high regularity known as triply regular graphs, where
for x, y, z ∈ V (X),

|{v ∈ V (X) : d(x, v) = i, d(y, v) = j, d(z, v) = k}|

is a constant which only depends on i, j, k and `,m, ν where

` = d(x, y), m = d(y, z), and ν = d(z, x).

Triply regular graphs are discussed in [8, 11] in the context of spin models.
In this note, we study triply regular graphs from an algebraic graph theory

perspective. In Chapter 2, we introduce basic concepts. In Chapter 3, we
introduce two matrix algebras associated with a graph: the Bose-Mesner
algebra and the Terwilliger algebra. In Chapter 4, we investigate strongly
regular graphs that are triply regular. We show, following [9], that strongly
regular graphs are triply regular if and only if they have strongly regular
subconstituents. Then in Sections 4.3 and 4.4, we study strongly regular
graphs with strongly regular subconstituents following a paper of Cameron,
Goethals and Seidel [4]. We show that a strongly regular graph has strongly
regular subconstituents with respect to any vertex when the Krein bound is
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met. We will also look briefly at classes of strongly regular graphs where
there exist some vertex x with respect to which the subconstituents X1(x)
and X2(x) are strongly regular. Finally, we will pose some open questions
concerning triply regular graphs.
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Chapter 2

Preliminaries

2.1 Notation

For a graph X, we denote by Xi(x) the ith neighbourhood of x; that is

Xi(x) = {y ∈ V (G) : d(x, y) = i}.

The subgraph induced by Xi is called the ith subconstituent of X.

2.2 Distance regular graphs

A distance regular graph is a graph X with diameter d such that there exists
{bi}d−1i=0 and {ci}di=1 such that for x, y ∈ V (X) with d(x, y) = i,

bi = |X1(x) ∩Xi+1(y)|

and
ci = |X1(x) ∩Xi−1(y)|.

The array {b0, . . . , bd−1 ; c1, . . . , cd} is said to be the intersection array of X.
One may observe that X must be regular with valency b0 and c1 is always
equal to 1. If we consider x, y ∈ V (X) at distance i apart, then the number
of neighbours of x in Xi(y) is ai = k − bi − ci.

For any graph G, a partition π of the vertices of G with cells V1, . . . , Vm is
said to be equitable if the number of neighbours of v ∈ Vi in Vj is a constant
bij which does not depend on the choice of v. For a distance regular graph
X, we can see that the distance partition {{x}, X1(x), . . . , Xd(x)} for any
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2. PRELIMINARIES

x ∈ V (X) is an equitable partition of X. The converse is also true and can
be found in [3].

2.2.1 Theorem. A graph X is distance regular if and only its distance
partition is equitable with the same intersection array, with respect to any
vertex x of X.

It is worth noting that the distance regular condition is equivalent to
requiring for any two vertices x and y of X at distance k, that the number
of vertices at distance i from x and distance j from y is a constant pkij which
does not depend on the choice of x and y.

2.3 Strongly regular graphs

A strongly regular graph is a graph X on n vertices that is neither complete
nor empty where each vertex has degree k, each pair of adjacent vertices has
a common neighbours and each pair of non-adjacent vertices has c common
neighbours. A connected strongly regular graph is a distance regular graph
of diameter 2 and has intersection array {k, k − a− 1; 1, c}. We refer to the
tuple (n, k, a, c) as the parameter of X.

The following theorem is a standard result relating the property of being
strongly regular to the eigenvalues of the graph. We follow the proof of [6] for
the first direction and give a slightly modified proof for the second direction.

2.3.1 Theorem. A connected regular graph X is strongly regular if and only
if it has exactly 3 distinct eigenvalues.

Proof. First we will show for that X, a connected strongly regular graph with
parameters (n, k, a, c), has exactly three eigenvalues. Let A be the adjacency
matrix of X. The uvth entry of A2 is the number of walks of length 2 from
u to v. Since X is strongly regular, the uvth entry of A2 depends only on
the adjacency of u and v; that is

(A2)uv =


k if u = v

a if u ∼ v

c if u � v.

Then, the adjacency matrix of X satisfies the following equation.

A2 + (c− a)A+ (c− k)I − cJ = 0 (2.3.1)
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2.3. STRONGLY REGULAR GRAPHS

where I is the the n× n identity matrix and J is the n× n all ones matrix.
Since X is regular, k is an eigenvalue of X with the all ones vector as

the corresponding eigenvector. Since A is a real symmetric matrix, we can
find an orthonormal eigenbasis of Rn with respect to A, say v1, . . . ,vn, with
corresponding eigenvalues λ1, . . . , λn. We may assume that λ1 = k and v1

is the all ones vector. Consider vi, where i > 1. Applying vi to 2.3.1, we
obtain

(A2 + (c− a)A+ (c− k)I − cJ)vi = 0

A2vi + (c− a)Avi + (c− k)Ivi − cJvi = 0

λ2iv + (c− a)λiv + (c− k)v = 0.

Then, every λ ∈ {λi}ni=2 must satisfy

λ2 + (c− a)λ+ (c− k) = 0. (2.3.2)

This is the minimal polynomial of A over the orthogonal complement of the
all ones vector in Rn. If we let ∆ = (a− c)2 + 4(k − c) be the discriminant,
the two roots of 2.3.2 are

θ =
(a− c) +

√
∆

2
,

and

τ =
(a− c)−

√
∆

2
.

Further, we can find that the multiplicities of the eigenvalues in terms of
the parameters. Let mθ and mτ be the multiplicities of θ and τ respectively.
We have that

1 +mθ +mτ = n

and
l + θmθ + τmτ = 0.

From these equations it is clear that θ, τ , mθ and mτ depend only on the
parameters of X.

Conversely, suppose X is a connected regular graph with adjacency ma-
trix A with three eigenvalues k, θ and τ , where k is the valency. Then, the
characteristic polynomial of A is

p(A) = (A− kI)(A− θI)(A− τI).
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2. PRELIMINARIES

Since X is connected and regular, the Perron-Frobenius theorem gives that
k has multiplicity 1. Let 1 be the all ones vector and consider all vectors
in the orthogonal complement W of 1 in Rn. The minimal polynomial of A
over W is

q(A) = (A− θI)(A− τI)

and vanishes on W . If we apply 1 to q(A) we get

q(A) = (A− θI)(A− τI)1

= (A− θI)(A1− τI1)

= (A− θI)(k1− τ1)

= (k − τ)(A− θI)1

= (k − τ)(A1− θI1)

= (k − τ)(k1− θ1)

= (k − τ)(k − θ)1.

We consider the matrix polynomial,

r(A) = (A− θI)(A− τI)− (k − τ)(k − θ)
n

J.

If y ∈ W , then Jy = 0, so r(A) vanishes under multiplication by vectors in
W . By the above calculation we see that

r(A)1 = (k − τ)(k − θ)1− (k − τ)(k − θ)
n

n1 = 0.

Then r(A) vanishes under right multiplication by all vectors in Rn and is
hence the 0 matrix. We have found a polynomial in A, I and J with degree
2 in A and this suffices to show that X is strongly regular.

A strongly regular graph X is said to be primitive if both X and its
complement are connected. Otherwise it is said to be imprimitive. We offer
this standard lemma from [6] , which will be useful, without proof.

2.3.2 Lemma. If X is a strongly regular graph with parameter (n, k, a, c)
then the following are equivalent

(a) X is not connected,

(b) c = 0,

8



2.4. REGULARITY CONDITIONS

(c) a = k − 1 and

(d) X is isomorphic to the disjoint union of more than one copy of Kk+1.

Lemma 2.3.2 gives us that the only imprimitive graphs are the disjoint
unions of complete graphs and the complements of such graphs.

2.4 Regularity conditions

A graph X is said to be triply regular if for x, y, z ∈ V (X) the number

|Xi(x) ∩Xj(y) ∩X`(z)|

for any choice of i, j and ` depends only the distances d(x, y), d(y, z) and
d(z, x).

It is clear that if a graph is triply regular, then it must be distance regular
and so we may view triply regular as a generalization of distance regular.
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Chapter 3

Matrix Algebras

Let X be a graph with diameter d and let A be its adjacency matrix. We
can consider the matrix subalgebra of Mn×n(R) generated by I, J and the
powers of A. If X is strongly regular, we saw that A2 is a linear combination
of A, I and J and so this matrix algebra has dimension 3. The following
theorem on distance regular graphs is standard in the literature. The proof
follows from the intersection array of X and will not be included here.

3.0.1 Theorem. [1] The graph X is a distance regular graph of diameter d
if and only if the matrix algebra generated by I, J and the powers of A has
dimension d+ 1.

From Theorem 3.0.1, we see that a distance regular graph has at most
d + 1 distinct eigenvalues. Any graph with diameter d has at least d + 1
distinct eigenvalues, so a distance regular graph of diameter d must have
exactly d+ 1 eigenvalues. Observe that A`uv is the number of walks of length
` from u to v in X. Let Ai be the matrix indexed by the vertices of X such
that the uvth entry is 1 if d(u, v) = i and 0 otherwise. The Bose-Mesner
algebra of X is the algebra generated by A0, A1, . . . Ad. Since Ai can be
expressed as a linear combination of Aj for j < i, we can rewrite Theorem
3.0.1 as follows:

3.0.2 Theorem. The graph X is a distance regular graph of diameter d if
and only if the Bose-Mesner algebra of X has dimension d+ 1.

In the next section, we will look at basic properties of the Bose-Mesner
algebra of a distance regular graph.
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3. MATRIX ALGEBRAS

3.1 Bose-Mesner algebra

For this section, we will let X be a distance regular graph with diameter d.
Let A be the adjacency matrix of X and let

A = {A0, A1, . . . , Ad}

be the distance matrices of X. Observe that A1 = A and Ai is symmetric
for all i. The uv entry of AiAj is the number of vertices at distance i from
u and j from v, which does not depend on the choice of u and v, since X is
distance regular. Then AiAj is symmetric and

AiAj = ATi A
T
j = (AjAi)

T = AjAi

which is to say that the Bose-Mesner algebra of A is a commutative algebra.
The following are true for A:

(i) A0 = I,

(ii)
d∑
i=0

Ai = J ,

(iii) ATi ∈ A for each i,

(iv) AiAj = AjAi is the the span of A and

(v) Ai ◦ Aj = 0

where ◦ denotes the entry-wise matrix product (called the Schur product or
the Hadamard product).

In general, a set of 01-matrices which satisfies a), b), c) and d) is said
to be an association scheme. We see that the Bose-Mesner algebra of any
distance regular graph is an association scheme, but the converse is not true.
An association scheme whose matrices are the distance matrices of a distance
regular graph is said to be a metric association scheme. An important prop-
erty of metric association scheme is that Aj is a linear combination of the
powers of A.

For each i, let pi(t) be the polynomial such that

pi(A) = Ai.
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3.1. BOSE-MESNER ALGEBRA

Let λ be an eigenvalue of A with eigenvector v. We have that

Aiv = pi(A)v = pi(λ)v

and so v is an eigenvector of Ai with eigenvalue pi(λ) for each i. Then
the matrices of A have the same eigenvectors. This gives us hope that the
simultaneous eigenspaces of the Ais will give us more information about the
Bose-Mesner algebra. Indeed, we will be able to construct another matrix
basis of the span of A using the eigenspaces of A.

Let λ0, . . . , λd be the eigenvalues of A with eigenspaces W0, . . . ,Wd, re-
spectively. For each i ∈ {0, . . . , d} let Ui be the matrix whose columns form
an orthonormal basis for Wi and let

Ei = UiU
T
i

be the projection onto Wi. Since X is regular, we may assume without loss
of generality that λ0 is the valency of X. We have the following lemma.

3.1.1 Lemma. Let X, A and {Ei, λi, pi(t)}di=0 be as defined above. Then
for each i, j ∈ {0, . . . , d} the following are true:

(a) E0 = cJ for some constant c ∈ R,

(b)
d∑
i=0

Ei = I,

(c) span({Ei}di=0) = span(A), and

(d) EiEj = δijEi.

where δ denotes the Kronecker delta.

Proof. Part a) follows from the assumption that λ0 is the valency of the
graph since W0 is spanned by the all-ones vector. By definition of the Ui’s,
we have that

E2
i = UiU

T
i UiU

T
i = EI

and for i 6= j
EiEj = UiU

T
i UjU

T
j = 0

since the vectors in different eigenspaces of a symmetric matrix are orthogo-
nal. We see that part d) is true.
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3. MATRIX ALGEBRAS

Since A is a symmetric matrix, its eigenspaces form an orthogonal parti-
tion of Rn and so we can decompose any vector v ∈ Rn into the sum of its
projections on the eigenspaces of A. That is to say that for v ∈ Rn,

v = E0v + · · ·+ Edv.

Since this is true for all vectors in Rn, we have that

E0 + · · ·+ Ed = I

and part b) follows.
To show that part c), we will first show that each Ai is in the span

of the Ei’s. Then, the statement of part c) will follow from the fact that
span(A) ⊆ span({Ei}di=0) and their bases have the same cardinality. In
particular, we will show

Ai =
d∑
j=0

pi(λj)Ej.

Consider Ai and Ej. Each column of Uj is an eigenvalue of Ai with eigenvalue
pi(λj) so,

AiEj = AiUjU
T
j

= (AiUj)U
T
j

= (pi(λj)Uj)U
T
j

= pi(λj)Ej.

Now we use the projection of the columns of A onto the partition of Rn
imposed by the Ei’s to obtain

Ai = AiE0 + AiE1 + · · ·+ AiEd

= pi(λ0)E0 + pi(λ1)E1 + · · ·+ pi(λd)Ed

as required.

From Lemma 3.1.1, we see that {Ei}di=0 is another basis for the Bose-
Mesner algebra ofX which behaves nicely under the matrix product. Observe
that property e) of A implies that the Bose-Mesner algebra is closed under
the Schur product. It follows that Ei ◦ Ej ∈ span(A). In particular, there
exists constant qkij such that

Ei ◦ Ej =
d∑

k=0

qkijEk.
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The constants qkij, where i, j and k range from 0 to d, are called the Krein
parameters of X. We always have that qkij ≥ 0 for all 0 ≤ i, j, k ≤ d since they
are eigenvalues of the Schur product of two positive semidefinite matrices and
are hence nonnegative. In the literature, these inequalities is refered to as
the Krein bounds. In Section 4.2, we will give a more complicated proof for
the Krein bounds of strongly regular graphs and obtain information about
the graph when one of the Krein bounds is tight.

3.2 Terwilliger algebra

We defined the Bose-Mesner algebra of a distance regular graph X with
diameter d to be the matrix algebra generated by the distance matrices A =
{A0, . . . , Ad} of X. To study triply regular graphs, we will need a matrix
algebra which captures more information about the distance classes of X.
To this end, we will define the Terwilliger algebra of X.

Fix a vertex x ∈ V (X) and recall that Xi(x) denote the set of vertices at
distance i from x. Let Fi be a diagonal matrix such that the (u, u) position
of Fi is 1 if d(u, x) = i and 0 otherwise. Essentially, the Fi’s are diagonal
matrices with the characteristic vectors of the distance partition of X with
respect to x on the diagonal. The matrix algebra generated by the distance
matrices A and the diagonal matrices F0, . . . , Fd is called the Terwilliger
algebra of X with respect to x. We will call x the vertex of origin.

We established in Section 2.2 that the distance partition of a distance
regular graph with respect to any vertex will be equitable. The Terwilliger
algebra of X may be different depending on the choice of the vertex of origin.
The Terwilliger algebra was first introducted by Terwilliger in 1992 in [12].

We will now show some basic, technical properties of the Terwilliger al-
gebra.

From the definition of Fi for i ∈ {0, . . . , d}, we see that

I = A0 =
d∑
i=0

Fi.

For 0 ≤ i, j ≤ d, both Fi and Fj are diagonal matrices with the characteristic
vectors of a partition of V as diagonal, so we have that

FiFj = δijFi.

15



3. MATRIX ALGEBRAS

Due to the combinatorial interpretation of the Ai’s and Fj’s, some products
can be expressed easily. We can consider the three-fold product

FiAjFk

for 0 ≤ i, j, k ≤ d. We can find the (u, v) entry of this product by direct
computation:

(FiAjFk)uv =

{
1 if u ∈ Xi(x), v ∈ Xk(x) and u ∈ Xj(v)

0 otherwise.
(3.2.1)

Using equation 3.2.1, we can find that

F0Aj = F0AjFj

and

AjE0 = EjAjE0.

By more direct calculation, we can see that

(AiFj)uv =

{
1 if d(u, v) = i and d(v, x) = j

0 otherwise.

Then,

(AiFjAk)uw =
∑

v∈V (X)

(AiFj)uv(Ak)vw

=
∑

v∈Xk(w)

(AiFj)uv

= |{v ∈ Xk(x) : v ∈ Xi(u) ∩Xj(x)}|
= |Xi(u) ∩Xj(x) ∩Xk(w)|

and we have

(AiFjAk)uw = |Xi(u) ∩Xj(x) ∩Xk(w)| (3.2.2)

for any 0 ≤ i, j, k ≤ d. Using equation 3.2.2, we can calculate further that

AiF0Ak = FiJFk.
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3.2. TERWILLIGER ALGEBRA

Since A is an association, we know there exists constants pkij such that

AiAj =
d∑

k=0

pkijAk.

Using the pkij and the above calculations, we can simplify some four-fold
products of the Ai’s and Fj’s, as follows:

F0AiFjAk = δij

d∑
`=0

p`ikF0A`F`

and

AiFjAkE0 = δjk

d∑
`=0

p`ikF`A`F0.

The proof follows from direct calculation and are not included here.
We summarize these technical properties and some immediate conse-

quences in the following lemma.

3.2.1 Lemma. The following are true for the Terwilliger algebra of a distance
regular graph:

(i) I = A0 =
d∑
i=0

Fi,

(ii) AiAj =
d∑

k=0

pkijAk,

(iii) FiFj = δijFi,

(iv)

(FiAjFk)uv =

{
1 if u ∈ Xi(x), v ∈ Xk(x) and u ∈ Xj(v)

0 otherwise,

(v) F0Aj = F0AjFj and AjE0 = EjAjE0,

(vi) (AiFjAk)uw = |Xi(u) ∩Xj(x) ∩Xk(w)|,

(vii) AiF0Ak = FiJFk,
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3. MATRIX ALGEBRAS

(viii) JFjAk =
d∑
i=0

pijkJFi,

(ix) AiFjJ =
d∑

k=0

pkjiFkJ ,

(x) F0AiFjAk = δij

d∑
`=0

p`ikF0A`F`, and

(xi) AiFjAkE0 = δjk

d∑
`=0

p`ikF`A`F0.
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Chapter 4

Strongly regular triply regular
graphs

In Section 4.1, we will use the Terwilliger algebra of the graph to show the
following theorem of Munemasa [9] describing triply regular strongly regular
graphs.

4.0.2 Theorem. A strongly regular graph is triply regular if and only if its
subconstituents with respect to any vertex are strongly regular.

We will then proceed to study strongly regular graphs with strongly reg-
ular subconstituents. For a graph to have strongly regular subconstituents,
it suffices to have one tight Krein parameter [4]. There are two approaches
to the proof. Godsil and Royle approach the problem by studying the local
eigenvalues of the graph as found in [6], which we will visit briefly in Section
4.2. In Section 4.3, we will look at the original proof of Cameron, Goethals
and Seidel in [4], which uses the spherical t-designs formed by the projections
of some orthonormal basis of Rn associated with the vertices of a strongly
regular graph X onto the eigenspaces of X. In Section 4.4 we will show
a theorem about necessity of strongly regular graphs with strongly regular
subconstituents. Finally, in Section 4.5, we will look at small examples of
graph with strongly regular subconstituents.

4.1 Strongly regular graphs

In this section, we will prove Theorem 4.0.2 following [9]. In order to prove
this, we need a few properties of the Terwilliger algebra. Let X be a strongly

19



4. STRONGLY REGULAR TRIPLY REGULAR GRAPHS

regular graph and fix vertex x ∈ V (X). Let A0, A1 and A2 be the distance
matrices of X. For i = 0, 1, 2, let Fi be the diagonal matrix with the char-
acteristic vector of Xi(x). We will consider T the Terwilliger algebra of X
with respect to vertex x.

Let T0 be the linear subspace of T spanned by

{FiAjFk : 0 ≤ i, j, k ≤ d}.

Clearly, T0 contains Ai for every i and Fj for every j. Then T0 generates T
as an algebra but may be a proper subspace of T .

4.1.1 Lemma. The subspace T0 is closed under the Schur product.

Proof. It is easy to see by Lemma 3.2.1 part (iv) that

F` ◦ (FiAjFk) = F`

when i = k = ` and j = 0 and

F` ◦ (FiAjFk) = 0

otherwise. Following some calculations using Lemma 3.2.1, we also obtain

A` ◦ (FiAjFk) ∈ T0

and the lemma follow.

4.1.2 Lemma. A distance regular graph X is triply regular if and only if
T = T0 for every choice of the vertex of origin.

Proof. Recall that X is triply regular if

|Xi(u) ∩Xj(v) ∩Xk(w)|

is independent of the choice of u, v and w, such that the pairwise distances
are d(u, v) = m1, d(v, w) = m2 and d(w, u) = m3. From Lemma 3.2.1 part
(vi), we have that

(AiFjAk)uw = |Xi(u) ∩Xj(x) ∩Xk(w)|,

where x is the vertex of origin of T . Then Lemma 3.2.1 part (vi), X is triply
regular if and only if AiFjAk is a linear combination of scalar multiples of
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4.1. STRONGLY REGULAR GRAPHS

matrices of form F`AmFν , for all 0 ≤ i, j, k ≤ d. Then X is triply regular if
and only if AiFjAk ∈ T0 for all 0 ≤ i, j, k ≤ d. If T0 = T , then we have that
X is triply regular.

For the converse, suppose that X is triply regular. We will consider
elements of T as linear combinations of words in Ai and Fj. We will show
that M ∈ T is in T0 by induction on the maximum length of the words in M ,
denoted s(M). Clearly since Ai and Fj are in T0 for all i and j, the base case
is true. Consider M with s(M) > 1. If in the longest word of M , we have
consecutive matrices of the same type, i.e. AiAj or FiFj for some i and j,
then we can reduce s(M) using Lemma 3.2.1 part (ii) or part (iii). Otherwise,
the longest word of M alternates between Ai’s and Fj’s and we can reduce
its length using the above observation that AiFjAk is a linear combination
of scalar multiples of matrices of form F`AmFν , for all 0 ≤ i, j, k ≤ d. Then,
M ∈ T0 by induction.

We assume from this point forward, that we must prove the statement
for any choice of x the vertex of origin. If X has diameter 2, then we can
simplify the requirement for T0 = T .

4.1.3 Lemma. A strongly regular graph X is triply regular if and only if
A1F1A1 ∈ T0.

The proof of Lemma 4.1.3 follows easily by relating AiFjAk to A1F1A1

using Lemma 3.2.1 and will be omitted here. Now we are ready to prove
Theorem 4.0.2 in two steps.

4.1.4 Theorem. If X is a strongly regular graph, then X is triply regular
if and only if its subconstituents with respect to any vertex are distance
regular.

Proof. Observe that FiAiFi is a block matrix with the adjacency matrix of
the ith subconstituent of X as a principal block and 0 elsewhere. Then, if X
is triply regular, X induces an association scheme on the subconstituents of
X.

Now suppose thatX induces an association scheme on the subconstituents
of X. Then

(F1A1F1)
2 = F1A1F1F1A1F1 = F1A1F1A1F1

and
(F2A1F2)

2 = F2A1F2F1A2F2 = F2A1F2A1F2
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4. STRONGLY REGULAR TRIPLY REGULAR GRAPHS

are in the spans of {F1A1F1, F1A0F1, F1JF1} and {F2A1F2, F2A0F2, F2JF2},
respectively, and so are in T0. Then F2A1F1A1F2 ∈ T0. By Lemma 4.1.1, we
have that

A2 ◦ F1A1F1A1F1

and

A1 ◦ F2A1F1A1F2

are both in T0. We can observe that the following are equivalent:

• A2 ◦ F1A1F1A1F1 ∈ T0 and

• A1 ◦ F2A1F1A1F1 ∈ T0.

This follows from the technical observation that both of these statements is
equivalent to the condition that

|X1(w) ∩X1(y) ∩X1(z)|

is a constant independent of the choice of w, y, z such that d(w, y) = 1,
d(y, z) = 1 and d(w, z) = 2. Similarly, the following are equivalent:

• A1 ◦ F2A1F1A1F2 ∈ T0 and

• A2 ◦ F2A1F1A1F2 ∈ T0 .

This follows from the technical observation that both of these statements is
equivalent to the condition that

|X1(x) ∩X1(y) ∩X1(z)|

is a constant independent of the choice of x, y, z such that d(x, y) = 2,
d(y, z) = 1 and d(x, z) = 2.

Then we have that

A1F1A1 = (F0 + F1 + F2)A1F1A1(F0 + F1 + F2)

so A1F1A1 ∈ T0 and X is triply regular as required.

4.1.5 Lemma. If the subconstituents of a strongly regular graph are distance
regular then they are also strongly regular.
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Proof. Suppose X is strongly regular and triply regular and the ith subcon-
stituent of X with respect to vertex x is distance regular of diameter e > 2
for some i ∈ {1, 2} and some x ∈ V (X). Let {b0, . . . , be−1; c1, . . . , ce} be the
intersection array of the ith subconstituent of X. Consider u, v, w, y ∈ Xi(x)
such that vertices u and v are not adjacent in X, vertices w and y are not
adjacent in X and the distances of the pairs {u, v} and {w, x} are different
in the ith subconstituent of X. Since X is triply regular, we obtain

|Xi(x) ∩X1(u) ∩Xj(v)| = |Xi(x) ∩X1(x) ∩Xj(y)|.

This implies that b2 = b3 = · · · = be−1 and c2 = · · · = ce, which contradictions
feasibility condition for intersection arrays of distance regular graph.

We see that Theorem 4.1.4 together with Lemma 4.1.5 imply Theorem
4.0.2.

4.2 The Krein bounds

Let X be a strongly regular graph. We consider the first and second sub-
constituent of X with respect to some vertex x and we will abuse notation
and use Xi(x) to denote the graph induced by the vertices at distance i
from X. An eigenvalue of Xi(x) is said to be a local eigenvalue if it is not
an eigenvalue of X. By studying local eigenvalue and using Theorem 2.3.1,
Godsil and Royle show the following theorem. The details can be found in
[6, p. 227-235].

4.2.1 Theorem. Let X be a primitive strongly regular graph with parame-
ters (n, k, a, c) and eigenvalues k, θ and τ , with multiplicities, 1, mθ and mτ

respectively. Then,

q111 = θτ 2 − 2θ2τ − θ2 − kθ + kτ 2 + 2kτ ≥ 0

and
q222 = θ2τ − 2θτ 2 − θ2 − kτ + kθ2 + 2kθ ≥ 0.

If either inequality is tight, then one of the following is true:

(i) X is the 5-cycle,

(ii) either X or its complement has all its first subconstituents empty, and
all its second subconstituents strongly regular, or

(iii) all subconstituents of X are strongly regular.
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4.3 Spherical t-designs

Let X be a strongly regular graph with parameters (n, k, a, c). Let A0 =
I, A1, A2 be the distance matrices of X. Let θ ≥ τ be the eigenvalues of
X, other than k and let their multiplicities be mθ and mτ respectively. Let
W0,W1,W2 be the eigenspaces of X, corresponding to k, θ, and τ respectively.
Let Ei be the orthogonal projections onto the Wi for i = 0, 1, 2, as in Chapter
3. We identify the vertices of X with an orthonormal basis X = {x1, . . . , xn}
of V := Rn. We see that

V = W0 ⊕W1 ⊕W2.

Let Yi be the set of projections of {xj}nj=1 onto Wi, which is to say that

Yi = {Eixj : j = 1, . . . , n}.

Recall that Ei = UiU
T
i where Ui is the matrix with an orthonormal basis Bi

of Wi as columns. We always have that U0 = 1√
n
1n where 1m is the all ones

vector of dimension m. Then,

U = [U0 U1 U2]

is the orthogonal transition matrix from X to B = B0 + B1 + B2.
Using standard matrix arguments, we know that there exists constants

αi and βi such that
n

mθ

E1 = I + α1A1 + β1A2

and
n

mτ

E2 = I + α2A1 + β2A2.

Then, we may assume the first basis vector of Ui is 1
αi1k
βi1`


where ` = n − k − 1. Let 0m be the zero vector of dimension m. Then, we
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can write U into blocks as

U =



1√
n

√
mθ
n

0Tmθ
√

mτ
n

0Tmτ

1√
n
1k

√
mθ
n
α11k

1√
θ−τK1

√
mτ
n
α21k

1√
θ−τK2

1√
n
1`

√
mθ
n
β21`

1√
θ−τL1

√
mτ
n
β21`

1√
θ−τL2


where K1, K2, L1 and L2 are k × (mθ − 1), k × (mτ − 1), `× (mθ − 1) and
` × (mτ − 1) matrices, respectively. Then, since the columns of U are an
orthonormal basis, we have

UTU = I

and be obtain the following lemma.

4.3.1 Lemma. For i = 1, 2,

KT
i 1k = 0, LTi 1` = 0,

and
KT
i Ki + LTi Li = (θ − τ)I.

Recall that the Krein parameters qkij are given by

Ei ◦ Ej =
2∑

k=0

qkijEk

for i, j ∈ {0, 1, 2}. We need the following technical lemma, whose proof we
will omit.

4.3.2 Lemma. The matrice Φi := 1√
θ−τ (αiK

T
i Ki + βiL

T
i Li) for i = 1, 2

satisfies

(mθ − 1)tr(Φ2
1)− tr(Φ1)

2 =
q111(mθ − 1− nq111)n

mθ

and

(mτ − 1)tr(Φ2
2)− tr(Φ2)

2 =
q222(mτ − 1− nq222)n

mτ

.

If Φi = γI for some γ, then qiii = 0 or (µi − 1) divides n, where µ1 = mθ and
µ2 = mτ . Further, if qiii = 0, then Φi = 0.
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A spherical t-design is a finite subset S of the unit sphere in Rm such that
the average value of any polynomial of degree at most t in m variables over
the points in S equals its average value of the sphere. We can find that S is
a spherical 1-design if and only if∑

s∈S

s = 0.

Let Z be a matrix such that the columns of Z are the elements of S. Then S
is a 2-design if and only if ZZT is a nonzero multiple of the identity matrix.
Any spherical 2-design which is a 2-distance set gives a pair of strongly regular
graphs. A description of spherical designs which contains the proofs of the
above statements can be found in [7, p. 272-273].

Fix x ∈ V (X) and let xj be the basis vector associated with x. Let Ωi be
the subspace of Vi orthogonal to Eixj.

4.3.3 Theorem. For i = 1, 2, the projection of X1(x) and X2(x) into the
subspace Ωi are spherical 2-designs of k and `, respectively, if and only if
qiii = 0.

Proof. By definition, Ki and Li are matrices with the vectors of the projection
of X1(x) and X2(x) into the subspace Ωi as columns, respectively. Then,
Lemma 4.3.1 gives that the projections are 1-designs. Then Lemmas 4.3.1
and 4.3.2 give that

αiK
T
i Ki + βiL

T
i Li = 0

and
KT
i Ki + LTi Li = (θ − τ)I.

Hence KT
i Ki and LTi Li are nonzero multiples of the identity matrix. Then,

KT
i Ki and LTi Li are the Gram matrices of spherical 2-designs in Ωi. Con-

versely, if KT
i Ki and LTi Li are the Gram matrices of spherical 2-designs in

Wi, then Φi = γI and qiii = 0.

We know that the vectors of Yi form a spherical 2-distance set in Vi from

n

mθ

E1 = I + α1A1 + β1A2

and
n

mτ

E2 = I + α2A1 + β2A2.

Then we have shown the following theorem.
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4.3.4 Theorem. [4] Let X be a strongly regular graph. Suppose qii
i = 0

for some i ∈ {1, 2}. Then, for every vertex x, the subconstituents X1(x) and
X2(x) are both strongly regular.

4.4 Smith graphs

Let X be a strongly regular graph with eigenvalues k ≥ θ ≥ τ . Let n, k, a, c
be as follows:

n =
2(θ − τ)2((2θ + 1)(θ − τ)− 3θ(θ + 1))

(θ − τ)2 − θ2(θ + 1)2
,

k =
−τ((2θ + 1)(θ − τ)− θ(θ + 1))

(θ − τ) + θ(θ + 1)
,

a =
−θ(τ + 1)((θ − τ)− θ(θ + 3))

(θ − τ) + θ(θ + 1)
, and

c =
−(θ + 1)τ((θ − τ)− θ(θ + 1))

(θ − τ) + θ(θ + 1)
.

If (n, k, a, c) are the parameters of X, then X is said to be a Smith graph.
A strongly regular graph is said to be of pseudo Latin square type if it

has the same parameters as a Latin square graph. A strongly regular graph
is said to be of negative Latin square type if there exists n and r such that
its parameters are

(n2, r(n+ 1),−n+ r2 + 3r, r2 + r).

4.4.1 Theorem. Let X be a strongly regular graph and suppose there exists
x ∈ V (X) such that the subconstituents X1(x) and X2(x) are both strongly
regular. Then, one of the following is true:

(i) X is isomorphic to the pentagon,

(ii) X is of pseudo or negative Latin square type, or

(iii) X or its complement is a Smith graph.

This does not fully characterize the set of strongly regular graphs with
strongly regular subconstituents. The next theorem gives a characterization
of graph where qiii = 0.
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4.4.2 Theorem. Let X be strongly regular graph. Then qiii = 0 for some i ∈
{1, 2} if and only if X is either a pentagon, a Smith graph or the complement
of a Smith graph.

4.5 Small examples of vanishing Krein pa-

rameters

A generalized quadrangle of order (s, t), denoted GQ(s, t), is an incidence
structure such that

(i) each point is incident with t+ 1 blocks and any two points are incident
with at most one block,

(ii) each block is incident with s+ 1 points and any two blocks are incident
with at most one point, and

(iii) for every x ∈ P and L a block in B not incident with x, there exists a
unique pair of point and block, say (y,M), where x is incident with M ,
M is incident with y and y is incident with L.

The point graph of a generalized quadrangle Q is the graph whose vertices are
the points of Q and two vertices are adjacent if they are both incident with a
block of Q. It is well-known that the point graph of generalized quadrangle
of order (s, t) is a strongly regular graph with parameters

((s+ 1)(st+ 1), s(t+ 1), s− 1, t+ 1)

and can be found in [10, p.291]. Some calculations will give that the point
graph of a generalized quadrangle of order (s, s2) or (s2, s) has qiii = 0 for
some i.

From the table of parameters of strongly regular graphs of [2], we can
find all graphs with no more than 1000 vertices such that qiii = 0 for some i.
The information is summarized in Table 4.1. By Theorems 4.0.2 and 4.3.4,
these graphs are triply regular.

Since the graphs in Table 4.1 have strongly regular subconstituents, it
is natural to look at the parameters of the subconstituents. For generalized
quadrangles and most of the other graphs in the table, the first subconstituent
is a disjoint union of complete graphs. Hence, it would be more interesting
to look at the parameters of the second subconstituent. Given the number
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Parameters Comments Number of graphs
(16,5,0,2) Clebsch graph unique
(27,10,1,5) Schaefli unique
(100,22,0,6) HigmanSims unique
(112,30,2,10) GQ(3, 9) unique

(162, 56, 10, 24) unique
(275, 112, 30, 56) 2-graph unique

(325,68,3,17) GQ(4, 16) at least 1
(640,243,66,108) no known graphs
(756,130,4,26) GQ(5, 25) 2 distinct graphs
(784,116,0,20) no known graphs
(800,204,28,60) no known graphs

Table 4.1: All graphs meeting Krein bound with number of vertices less than
1000.

of vertices and the valency, for small graphs, the parameter set of the second
subconstituent can be determined and we summarize the parameter classes
in Table 4.2

This implies that the 2nd subconstituent of the Schlaefli graph with re-
spect to any vertex is isomorphic to the Clebsch graph and the 2nd subcon-
stituent of the Clebsch graph with respect to any vertex is isomorphic to the
Petersen graph.

29



4. STRONGLY REGULAR TRIPLY REGULAR GRAPHS

Parameters of X Params of X2(x) Comments
(16,5,0,2) (10, 3, 0, 1) unique
(27,10,1,5) (16, 5, 0, 2) unique
(100,22,0,6) (77, 16, 0, 4) unique
(112,30,2,10) (81, 20, 1, 6) unique

(162, 56, 10, 24) (105, 32, 4, 12) unique
(275,112,30,56) (162,56,10,24) unique
(325,68,3,17) (256, 51, 2, 12) at least 1

(640,243,66,108) (396,135,30,54) no known graphs
(756,130,4,26) (625,104,3,20) at least 1
(784,116,0,20) (667,96,0,16) no known graphs
(800,204,28,60) (595,144,18,40) no known graphs

Table 4.2: Strongly regular second subconstituents of graphs.
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Chapter 5

Open problems and further
research

From Theorems 4.0.2 and 4.3.4, we get the following statement about strongly
regular triply regular graphs.

5.0.1 Theorem. Let X be a strongly regular graph. If qiii = 0 for some
i ∈ {1, 2}, then X is triply regular.

While we have looked at many theorems concerning triply regular graphs
of diameter 2, there is much less literature concerning triply regular graphs
of diameter greater than 2.

We saw that strongly regular graphs with strongly regular subconstituents
have been well-studied. The natural generalization is to strongly regular
graphs with distance regular subconstituents. It is known that any con-
nected subconstituent of a strongly regular graph has diameter at most 3
and Gardiner et al. characterize this case in [5].

From Table 4.1, we see that there exists two non-isomorphic graph with
co-parametric second subconstituents. There are no known exactly of pairs
of non-isomorphic graphs with isomorphic second subconstituents. Such ex-
amples would be of interest for research on graph isomorphism and graph
invariant.
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