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Can you take a walk around Koénigsberg traversing
each bridge exactly once and ending up where you
started?
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a graph
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The degree of a node is the number of edges at that node.

If a graph has an eulerian tour, then the degree of

gl every node is even.

and thus we have answered our original question:
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A_ No, there is no eulerian tour through the seven

bridges of Kénigsberg.
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Some examples:

This graph is disconnected and so does not have an eulerian
tour.
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We've see that:

» agraph has an eulerian tour = it has even degree at every
vertex.

» a graph has an eulerian tour = it is connected.

It turns out that those conditions are sufficient:
has even degree at every vertex
is connected

eulerian tour.

» agraph = it has an

A graph has an eulerian tour if and only if it is con-

Fact nected and every node has even degree.
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Why? Suppose the statement is not true. Then there exists a
counterexample. So we may consider, G, the smallest
counterexample; the one with the least number of edges.

So G must not have been the smallest, a contradiction.
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which share a border have the same colour.

We can properly colour the faces of a planar eulerian
graph with 2 colours.
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Fact ‘ Every planar graph can be coloured by 4 colours.

This is the Four Colour Theorem. It was first proposed in 1852.
There were many false proofs. Heawood proved the 5 colour
theorem in 1890.

The Four Colour Theorem was first proven by Appel and Haken
in 1976. The proof includes 1936 cases that have to be
checked by a computer. Robertson, Sanders, Seymour and
Thomas improved this to 633 cases in 1996. It remains one of
the most difficult theorems to verify today.

We will prove the 6 colour theorem today.
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Euler's Theorem

LEONHARD EULER 1707-1783

Fact | Inaplanar graph, # nodes - # edges + # faces = 2.
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If e is the number of edges, n is the number of nodes and f is
the number of face, then Euler’s theorem says:

v—e+f=2

From this, we can get that e < 3v — 6, which implies that there
must exist a node of degree at most 5.
Now we may prove the 6 colour theorem.
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The Four Colour Theorem is very difficult, but it uses a similar
idea.
Basic idea:

» We also suppose the statement is untrue and consider the
smallest counterexample.

» It’s possible to show that any planar graph that cannot be
coloured with 4 colours must contain one of 633
special configurations.

» Then, we can show, for each of the 633
special configurations, that they cannot occur in the
smallest counterexample; if they occurred, we may reduce
it and have a smaller counterexample.

» Then, we have a contradiction, and we’re done.



Happy epic 7 day!



Thanks!

Some pictures from Wikimedia Commons.
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