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Q:
Can you take a walk around Königsberg traversing
each bridge exactly once and ending up where you
started?
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An eulerian tour is a walk in the graph which traverses every
edge exactly once and ends up at the same node that we
started at.
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The degree of a node is the number of edges at that node.

Fact
If a graph has an eulerian tour, then the degree of
every node is even.

and thus we have answered our original question:

A: No, there is no eulerian tour through the seven
bridges of Königsberg.
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We’ve see that:

I a graph has an eulerian tour⇒ it has even degree at every
vertex.

I a graph has an eulerian tour⇒ it is connected.
It turns out that those conditions are sufficient:

I a graph
has even degree at every vertex
is connected

⇒ it has an

eulerian tour.

Fact
A graph has an eulerian tour if and only if it is con-
nected and every node has even degree.
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Suppose the statement is not true. Then there exists a
counterexample. So we may consider, G, the smallest
counterexample; the one with the least number of edges.

So G must not have been the smallest, a contradiction.
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We want to colour the faces of the graph so that no two faces
which share a border have the same colour.

Fact
We can properly colour the faces of a planar eulerian
graph with 2 colours.
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This is a problem that has troubled mapmakers since ever.
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Fact Every planar graph can be coloured by 4 colours.

This is the Four Colour Theorem. It was first proposed in 1852.
There were many false proofs. Heawood proved the 5 colour
theorem in 1890.

The Four Colour Theorem was first proven by Appel and Haken
in 1976. The proof includes 1936 cases that have to be
checked by a computer. Robertson, Sanders, Seymour and
Thomas improved this to 633 cases in 1996. It remains one of
the most difficult theorems to verify today.

We will prove the 6 colour theorem today.
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If e is the number of edges, n is the number of nodes and f is
the number of face, then Euler’s theorem says:

v − e + f = 2

From this, we can get that e ≤ 3v − 6, which implies that there
must exist a node of degree at most 5.
Now we may prove the 6 colour theorem.
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The Four Colour Theorem is very difficult, but it uses a similar
idea.

Basic idea:

I We also suppose the statement is untrue and consider the
smallest counterexample.

I It’s possible to show that any planar graph that cannot be
coloured with 4 colours must contain one of 633
special configurations.

I Then, we can show, for each of the 633
special configurations, that they cannot occur in the
smallest counterexample; if they occurred, we may reduce
it and have a smaller counterexample.

I Then, we have a contradiction, and we’re done.
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Some pictures from Wikimedia Commons.
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