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Checking conjectures and counterexamples

Theorem (Mohar 2013)

Every connected subcubic bipartite graph that
is not isomorphic to the Heawood graph has at
least one (in fact a positive proportion) of its
eigenvalues in the interval [−1, 1].

Question: what about (−1, 1)?
We construct an infinite family of connected cubic
bipartite graphs which have no eigenvalues in the
open interval (−1, 1).

Found by searching the census of cubic
vertex-transitive graphs.
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Visualizing new mathematical objects

Continous quantum walk

Transition matrix of the quantum walk

U(t) = eitA

where A is the adjacency matrix of a
graph.

U(t) =
u

v

t 7→ (xt, yt)
U(t)u,v = xt + iyt
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Calculator

.... many other uses!



Get to know SageMath!

sage: runfile cms-guessthisgraph.sage

g1, g2, g3 have been defined

sage: g1.

clique_number()

degree()

diameter()

girth()

complement()

is_regular()

is_bipartite()

is_clique()

is_chordal()

is_planar()

is_connected()



Constructing an awesome graph

We will demonstrate SageMath by constructing a
specific graph. We will use the following ingredients:

Projective geometry, hyperovals, finite fields.
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Strongly regular graphs

Example: (25, 8, 3, 2).

A strongly regular graph with parameters (n, k, a, c) is

a graph on n vertices such that

k a c
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How do we construct strongly regular graphs?

One way is as the point (or line) graphs of an
incidence structure.

Point graph
vertices:
adjacent if on the
same block

Block graph

We get a strongly regular graph as a point (or
block) graph if we pick a ”nice” incidence structure.
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A ”nice” incidence structure

A generalized quadrangle is a pair (P,B)
satisfying the following two axioms:

any two points of P are on at most one line
in B;

if point p ∈ P is not on line ` ∈ B, then
there exists a unique point q ∈ ` such that p
and q are collinear.

There will be parameters (s, t) such that:

each point is on t+ 1 lines;
each line is on s+ 1 points
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How do we get a generalized quadrangle?

We will construct a particular generalized
quadrangle, denoted in the literature as
T ∗
2 (O).

For this, we will need the following:

finite field, GF (q), where q is
even;

projective space over GF (q); and

a hyperoval in projective plane over
GF (2h).



Projective space

(Finite) projective space PG(n, q) is an
incidence structure in the n+ 1-dimensional
space over GF (q), where q is a prime power,
where:

points: 1-dimensional subspaces

lines: 2-dimensional subspaces

planes: 3-dimensional subspaces

...
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Hyperovals

In PG(2, q), where q = 2h, we can have q + 2
point where no points are collinear.

Such a set of q+2 points is called a hyperoval.

Fact: Every hyperoval has the following form:
 1

t
f(t)

 , t ∈ GF (q)

 ∪

0
1
0

 ,

0
0
1

.

Open problem: classify all f(t) which give hyperovals.

Some f(t) which work:

t2, t6, t2
k

where k, h are coprime
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The construction

PG(3, 2h)

AG(3, 2h)

PG(2, 2h)

hyperoval

points

blocks

This will give a generalized quadrangle of order
(q − 1, q + 1), where q = 2h.



Give it a go!

sage: gq4 = GQTstar(GF(4),"hyperconic")

sage: h = pointsGraph(gq4)
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Or ...

Construct the following graphs. Are they
isomorphic?



Installing sage

https://doc.sagemath.org/html/en/installation/


